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CHAPTER 1
INTRODUCTION: OBJECTIVES AND ORGANIZATION

Over the past decade, a considerable effort in theoretical
seismology has been directed toward the development of numerical
methods for simulating wave propagation in laterally heterogeneous
elastic media. Recent developments (with some selected references) in-
clude: 1integral equation methods (Aki and Larner, 1970; Bouchon, 1976;
Wong and Jennings, 1975; Wong, 1975), perturbation methods (Hudson,
1967; Aboudi, 1971; Kennett, 1972), genera1iied ray methods (Hong and
Helmberger, 1977), finite difference methods (Alterman and Karal, 1968;
Boore, 1972), and finite element methods (Drake, 1972; Lysmer and Drake,
19725 Smith, 1975; Frazier and Petersen, 1974). This thesis deals with
the finite element method. Specifically, this study seeks to enlarge
the class of elastodynamic problems for which finite element analysis is
effective, and to employ the method for analyzing selected problems that
involve the scattering of seismic waves.

The basic numerical tool for this study is the dynamic finite
element code developed by Frazier (see Frazier, et al.,1973; Frazier
and Petersen, 1974). A brief description of this computational method
is contained in Appendix I. Two key features of the method are to be
noted: 1) it employs tfme-centered explicit integration in time, and
i1) a stiffness matrix is not assembled, so that storage requirements
are small compared with conventional codes. This code shares with all
finite element (and finite difference) schemes an intrinsic limitation
on its applicability: the response of the code is severely band-limited

{or, more precisely, it is wavelength-limited). It is not possible to
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ABSTRACT OF THE DISSERTATION

Finite Element Analysis

of Seismic Scattering Problems

by
Steven Milton Day

Doctor of Philosophy in Earth Sciences
University of California, San Diego, 1977
Professor James N. Brune, Co-Chairman

Professor J. Enrique Luco, Co-Chairman

A finite element method is employed in this study to analyze some
wave propagation problems of interest in seismo]ogy and earthquake
engineering. An essential step in the study is the generalization of
the finite element method to treat three-dimensional elastic fields in
axisymmetric media.

An overview of the limitations of finite element methods under-
scores the following considerations: (i) For frequencies corresponding
to fewer than about six elements per wavelength, phase and group velocity
reductions begin to significantly corrupt numerical solutions; (ii) even
quite low values of artificial viscosity result in significant attenua-
tion of frequency components which are quite accurately computed
in the undamped case; (iii) discontinuities in element size generate

spurious reflected waves which can seriously contaminate a numerical
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solution. Numerica] experiments indicate that a gradual growth of
element size, accompanied by artificial viscosity, can provide a
successful technique for reducing grid requirements while avoiding
spurious reflections. This simple technique, however, leads to
considerable noise in the computed waveforms when the element-size
growth rate is mucn in excess of about 10 percent per element.

Linear prediction is introduced as a tool for the Fourier
analysis of numerically computed, transient waveforms. Extrapolation
of computed waveforms reduces frequency domain errors associated with
time domain truncation. The technique appears to appropriately repre-
sent the behavior of a significant class of physical systems.

I extend the finite e1ément method to treat general three-
dimensional elastic wave fields in axisymmetric media. This is
accomplished by expanding the azimuthal dependence of the dependent
variables as Fourier series. Efficacy of the method is evaluated
by comparing numerical solutions to analytical solutions for the
problems of (i) radiation from a double-couple in a half-space and
(ii) radiation from a shear stress relaxation on a growing circular
fault plane. Capabilities of the method are illustrated for a number of
problems involving the scattering of seismic waves.

The radiation and scattering of elastic waves by rigid
structural foundations is treated in considerable detail. These
problems are fundamental for characterizing the seismic response of
buildings. Accuracy of the treatment is documented by comparing
numerical solutions with available analytic solutions. A useful recipro-

cal property of the radiated and scattered fields is derived, and this

XV



property is exploited to reduce the computational effort.

Results for axisymmetric foundation geometries indicate that
embedment has a marked influence on foundation response to seismic and
external loads. Foundation response to vertically incident SH waves
is more sensitive to embedment depth than is the response to hori-
zontally incident SH waves. For vertical incidence, the rocking
component (which is zero for flat foundations) attains a significant
fraction of the free field amplitude as a result of embedment. The
‘horizontal component (which equals the free field for flat foundations)
diminishes with respect to the free field as a result of embedment.

For horizontal incidence, the rocking component is small compared to
the torsicnal and horizontal response. Torsion and horizontal
translation both decline with increasing embedment, at low frequencies,
put embedment depths greater than .5 times the radius have little
additional effect on these components.

The numerical results for axisymmetric foundations provide
verification of a high-frequency approximation method which is not

dependent on the symmetry of the foundation.

Xvi



CHAPTER 1
INTRODUCTION: OBJECTIVES AND ORGANIZATION

Over the past decade, a considerable effort in theoretical
seismology has been directed toward the development of numerical
methods for simulating wave propagation in laterally heterogeneous
elastic media. Recent developments (with some selected references) in-
clude: intégra] equation methods (Aki and Larner, 1970; Bouchon, 1976;
Wong and Jennings, 1975; Wong, 1975), perturbation methods (Hudson,
1967; Aboudi, 1971; Kennett, 1972), generalized ray methods (Hong and
Helmberger, 1977), finite difference methods (Alterman and Karal, 1968;
Boore, 1972), and finite element methods (Drake, 1972; Lysmer and Drake,
19725 sSmith, 1975; Frazier and Petersen, 1974). This thesis deals with
the finite element method. Specifically, this study seeks to enlarge
the class of elastodynamic problems for which finite element analysis is
effective, and to employ the method for analyzing selected problems that
involve the scattering of seismic waves.

The basic numerical tool %or this study is the dynamic finite
e]emént code developed by Frazier (see Frazier, et al.,1973; Frazier
and Petersen, 1974). A brief description of this computational method
is contained in Appendix I. Two key features of the method are to be
noted: 1) it employs time-centered explicit integration in time, and
i) a stiffness matrix is not assembled, so that storage requirements
are small compared with conventional codes. This code shares with all
finite element (and finite difference) schemes an intrinsic Timitation
on its applicability: the response of the code is severely band-Timited

{or, more precisely, it is wavelength-limited). It is not possible to



accurately simulate seismic waveiengths substantially shorter than the
characteristic Tength of the heterogeneity being modelled. On the other
nard, the formulation allows wide flexibility in specification of
boundary conditions, constitutive properties, and model geometries (see,
for example, Frazier and Petersen, 1974; Archuleta, 1976; Day and
Frazier, 1977).

Chapter 2 is basically a guide to the design of finite element
calculations and the interpretation of results. Inaccurate solutions and
misleading conclusions result when the effects of discretization and
finiteness are not carefully considered. On the ather hand, within its
regime of validity, the finite element method is capable of remarkable
accuracy. Both the accuracy and limitations of the method are assessed
in Chapter 2 for one-dimensional problems, by comparing numerical re-
sults with simple exact solutions. 1In the subsequent chapters, as each
new class of problem is introduced, available two- and three-dimensional
analytical solutions are examined in comparison to finite element so-
lutions.

In Appendix II, I extend the finite element method described in
AppendixI to treat general three-dimensional elastic wave fields in
axisymmetric media. A problem of this class can be decomposed as the
sum of a number of independent, essentially two-dimensional problems.
This is a consequence of separability of the equations of elastodynamics,
and is accomplished by expanding the azimuthal dependence of the de-
pendent variables as Fourier (sine and cosine) series. A number of
problems of seismological and engineering interest involve only a few

azimuthal orders. Capabilities of the method are illustrated in



Chapter 3 by means of some sample problems. Problems treated include:
radiation from double couples in a uniform halfspace, a layered half-
space, and a sediment cone in a halfspace, and radiation from a
dynamié stress drop on a circular fault plane in a uniform full

space.

In Chapter 4 T use the methods of Chapters 2 and 3 to treat a
set of wave propagation problems which is fundamental to the investi-
gation of the response of structureé to earthquakes. These are essen-
tially the problems of radiation and scattering of elastic waves by
rigid inclusions in a halfspace. For these problems, the three-
dimensional character of the formulation is crucial (Luco and Hadjian,
1974). A useful reciprocal property of the radiation and scattering
problems is derived, and this property is exploited to considerably re-
duce the computational effort. A careful treatment of axisymmetric
scatterers leads to development and verification of a high-frequency
approximation method which is not dependent on the symmetry of the

scatterer.



CHAPTER 2
ACCURACY OF FINITE ELEMENT SOLUTIONS IN TIME AND FREQUENCY DOMAINS
2.1 INTRODUCTION

Inaccuracies in the finite element method stem from discretiza-
tion of the time and space variables, finite extent of the spacial grid,
and finiteness of the time sample over which a solution can be econom-
ically computed. This chapter examines the nature of these limitations
and discusses some efforts that have been made to extract maximum time
“domain and frequency domain information from numerical computations.

It is not intended as a theoretical treatment of the finite element
method, but rather as a guide to practical considerations in its use.

First we consider the problem of wave propagation in a one-
dimensional, uniform grid. Some simple algebraic expressions and
numerical results depict the restriction imposed by spatial and temporal
discretization. Then we éonsider the problem of grid finiteness and the
effect of non-uniform element size. A successful technique is developed
for damping out non-physical grid reflections. Finally, some difficul-
ties posed by finiteness of the solution time series are dealt with. A
simple scheme based on linear prediction is developed which effectively
ameliorates truncation error in the numerical Fourier transformation of

computed transient waveforms.
2.2 SPACE-TIME DISCRETIZATION

The solution of wave propagation problems by the finite element

method requires that continuous functions of space and time be approxi-



mately represented in terms of a finite number of degrees of freedom.
Generally, these degrees of freedom are the displacement components at
a discrete set of "node points" and a discrete set of times (see
Appendix I ). This discretization of the dependent variables leads to
errors in the numerical solution relative to the continuum sclution. A
semi-quantitative understanding of the discretization effect is import-
ant both in designing a computation and in interpreting thé results.

To evaluate the effects of discretization, we consider the
propagation of elastic waves in a one-dimensional, uniform medium. In

i+

this case, the finite element equation for Un , the displacement at

node n at time step m+l , 1is equivalent to the difference equation
m- M /M
Y gy el 2ca ((UHH-UH) ), (2.1)
n n n AFA Ly L. A, '}

In Equation (2.1), ¢ is the (continuum) wave speed of the medium, At is

th

the time step, and A, is the distance between the n—1th and n~ node

points .

For uniform element size (that is, by = AX for a1l n), Equation (2.1)

i (watm-kaxn)

has solutions of the form Ae , where k and « satisfy the

dispersion relation

1 . 2 wnAx _ .. 2 Kax
;2551n 5o = sin” 5%, (2.2)

with n = Atc/ax .



The dispersion relation Equation (2.2) applies rigorously only
to waves in a one-dimensional grid with uniform elastic properties. For
elastic waves in two or three dimensions, the finite element approxima-
tion is no longer precisely equivalent to a simple difference equation
of the form of Equation (2.1). However, Equation (272) still provides
a good representation of the approximate behavior of P and S waves in a
two- or three-dimensional grid with piecewise nomogeneous elastic pro-
perties. To estimate the governing value of 5 , we interpret ¢ as
the Tocal P or S wave speed in the portion of the medium under consider-
ation. The ratio at/ax is restricted by the stability conditions on
the time-stepping scheme; for multidimensional problems, At/ax
usually will not exceed 1/2amax » Where o ax is the maximum P wave

speed in the medium. We can therefore roughly bound n
0 <n<1/2. ‘ (2.3)

We note several features of the above one-dimensional solution.

sin”! N, Waves propagate in the numeri-

First, for frequencies o <r$§x
cal grid without loss of amplitude. Secondly, the grid is dispersive;
while Tong wavelengths propagate at approximately the continuum wave
speed ¢, short wavelengths travel at reduced phase velocities. To
see this we introduce L = 27/kax » the number of grid elements per
wavelength, and CN = w/k , the phase velocity of waves in the numeri-
cal grid, and obtain

oy = %%—sin"](n sin /L) . (2.4)



As Figure 2.1 indicates, the dispersion is not strongly dependent on o
over the range 0 < n < 1/2 . The phase velocity reduction is less
than 4% for wavelengths exceeding 6ax. Third, the group velocity,

Uy = dw/sk , given by

‘ Uy = C(1-rPsin’ %)-1/2cos T (2.5)
decays quite rapidly for wavelengths less than about 6aXx; this is
shown in Figure 2.1. Therefore, we expect a pulse containing substan-
tial high-frequency components to display a lengthy dispersed wave train
as it propagates. Finally, wavelengths less than 2ax are not propa-
gated at all; for frequencies greater than the "cutoff frequency" W,
where

we = %%;-sin'ln‘, (2.6)

the wavenumber k becomes complex, and only exponentially decaying
solutions exist. .

The above phenomena, for n = 1/2 , are illustrated in Figure
2.2(a) and (b), for the case of propagation of an impulse in a-onendimen—
sional, uniform grid. The top left curve shows the applied displacement
pulse, withits Fourier transform (amplitude and real part, shown as solid
and dashed lines, respective1y) to the rignt. Subsequent pairs are the
time series and transform at 20-element intervals along the grid (the
phase has been corrected according to the continuum phase velocity). The
constancy of amplitude for propagating waves, when u < Wes is apparent,
as is the expected dispersion.

To obtain usable time series, it is necessary to progressively



remove the higher frequencies from the solution. Two approaches to this
problem have been taken by investigators: (i) artificial material vis-
cosity may be introduced into the numerical calculations, in order to
damp out high frequencies (Frazier et al., 1973), or (ii) the solution
time series may be digitally filtered after the computation is completed
(Smith, 1975). For non-linear problems, of course, damping is generally
the only acceptable procedure. For linearly elastic problems, to which
this study is limited, post-filtering of an undamped numerical solution
is preferred. This is because sufficient damping to eliminate spurious
time domain oscillations inevitably degrades the Fourier transform of
the numerical solution over frequencies at which the undamped solution
is accurate. For this reason, it is desirable to have available the un-
damped’solution for Fourier analysis. Furthermore, numerical damping
attenuates a pulse in such a way that its amplitude is dependent on the
distance over which it has propagated. The relative amplitudes of
multiply reflected pulses, for example, are distorted by damping.

The above considerations are illustrated in Figure 2.2(c),(d) and
(e). Figure 2.2(c) shows the result of low-passing the time series in
(a). The cutoff period of the filter equals the time for a wave to
traverse 10 elements. A zero-phase-shift filter was used. Figure
2.2(d) shows the time series obtained using damping in the numerical
calculation, and (e) shaws their Fourier transforms. The damping
parameter used was sufficient to attenuate a wavelength of 6a by a

factor of e"'OZX/AX

, where Ax is the element length and x is the
distance the wave has propagated. Although damping produces a usable
waveform, it results in significant attenuation of wavelengths greater

than ©64x, which are accurately computed in the undamped case.

o



1.0 T T N A

VELOCITY / CONTINUUM WAVE SPEED

0 | i ]

2 4 6 8 10
L = WAVELENGTH /A X

Figure 2.1. Phase and group velocities of waves in a one-dimensional nu-
merical grid, plotted against the ratio of wavelength to element size.
The two values of n correspond to the expected extremes for this
parameter,
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Damping confined to a portion of the numerical grid sometimes
provides a useful technique even in linear problems, as discussed in the
next section. Also, the dynamic crack problem of Chapter 3, although
based on a linearly elastic constitutive model, requires an artificially
damped solution. This is because the boundary conditions are adjusted in

time, depending non-linearly on the dynamic elastic field.
2.3 GRID FINITENESS

Considerable difficulty results from the frequent need to model
an unbounded medium using a numerical grid which is necessarily finite
in extent. The spatial finiteness of numerical grids introduces arti-
ficial boundaries which inevitably limit the applicability of finite
element and finite difference methods. No generally satisfactory so-
Tution to this difficulty has yet been implemented.

The problem has been partially solved for some special cases.
Lysmer and Wass (1972) developed a finite element method applicable to
the steady state, antiplane motion of a layer of infinite lateral ex-
tent, terminated below by a rigid boundary. The theory has been extend-
ed to include in-plane two-dimensional motion (Drake, 1972) and axisym-
metric geometries (Wass, 1972; Kausel, et aZ., 1975), but is restricted
to steady state problems in a layer.

For transient problems, it is sufficient that no reflection
from a grid boundary reach an observation point within the
duration of the calculation. When only a relatively short time series
is necessary to characterize the solution, it may be feasible to use a

uniform grid of sufficient size to accommodate the non-physical
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reflections during the calculation. When this is uneconomical, two
fairly obvious possibilities for avoiding non-physical reflection are:
1) include a narrow zone of high material damping surroundiné the por-
tion of the grid in which the solution is of interest, or (2) include a
wide zone of very coarse grid surrounding the regfon of interest. The
inadequacy of the first approach is that only relatively short wave-
lengths will be significantly attenuated by a narrow zone; the greater
the Targest wavelength of interest, the wider must be the dissipative
zone.

The difficulty with the second approach is that the interface
between the fine grid and the coarse grid can be highly reflective to
short wavelength waves. To see this we consider again Equation (2.1),
the difference equation governing a one-dimensional, uniform medium.
This time we introduce a discontinuity in cell size at n =0 , setting
A =ax for n <0 and A, = @x for n>0.

n
AX TAX

-3 -2 -1 0 1 2 3

e](wAtm-kAXﬂ) impinging on the interface from the left,

will give rise to a reflected wave ARe1(mAtm+kAxn) , and a transmitted

wave ATe1(wAtm-kAXCn) . w and k

Then a wave

bl

are related by Equation (2.2), and

k is related to k by

sin = ¢ sin 5 - (2.7)

The reflection and transmission coefficients AR and A are



13

R COS E-- (1-c%sin® EJ]/Z
Als— N (2.8)
cos [_—+ (]-C sin L—)
2 cos =
T L
A= , (2.9)
cos E—+ (1-gzsin2 EJ]/Z

where L s 2n/kax, the number of grid cells per wavelength of the
incident wave. When L < n/sin'](1/c), AR becomes complex, with unit
modulus; that is, incident waves are totally reflected. AR , for
several values of g , 1is plotted against L 1in Figure 2.3. When the
cell size doubles (z=2) , incident wavelengths with L = 6 are total-
ly reflected, and only for L greater than 10 is the reflection co-
efficient less than 10%.

The situtation can be summarized as follows: we can adequately
attenuate short wavelengths by means of a narrow, peripheral, dissi-
pative region terminated by an artificial boundary; but long wave-
lengths will persist and be strongly reflected. Alternatively, we can
transmit long wavelengths efficiently by means of a wide, but coarsely
gridded peripheral region; but short wavelengths will be partially or
fully reflected. These considerations suggest the following hybrid ap-
proach, which has been adopted for portions of this study. A region of
uniform grid (in which an accurate solutjon is desired) is surrounded by
a region in which the cell size gradually increases with increasing
distance from the uniform grid. This zone of growing grid is made
dissipative, and terminates at a large distance fram the uniform grid.

Waves of a given wavelength generated in the uniform grid will penetrate
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the growing grid until the cell size is sufficiently large to cause
substantial reflection. Longer wavelengths propagate further before
reflecting; with an appropriate choice of grid growth rate and damping,
it is possible to efficiently attenuate nearly all reflections.

The primary justification of this approach lies in the numerical
results. I've used a growing grid with damping to treat the one-
dimensional problem of a plane wave vertically incident upon a low vel-
ocity layer, of thickness h , overlying a higher velocity halfspace,
and with a free upper surface. The ratio czzk:] of the wave speed in
the halfspace to that in the Tlayer is 1.71, and the density o is the
same in both media. An impulsive plane wave is generated by applying
appropriate body forces just beneath the layer. The resulting incident
displacement, wu(z,t), approximates an upward propagating delta function
1/25(t-z/c) . A portion of the numerical grid for the problem is shown
on the far right in Figure 2.4 . The Tow velocity layer is represented
by 20 cells, the high velocity halfspace by 36 cells. The upper 24
cells of the grid are uniform in size, and below these the cell size in-
creases with depth, each cell being a factor of 1.1 greater than its
predecessor. The motion in the Qpper 24 cells was undamped, while the
motion in the remainder of the model was damped, using a damping coeffi-
cient (corresponding to g/At , as defined by Frazier, et al., 1973) of
.3. This value of the damping is sufficient, in a uniform grid, to
attenuate a wavelength of 6ax by a factor of g™+ 03%/8x , where X
is the distance the wave has propagated.

The computed free surface displacement time series is shown at

the top of Figure 2.4, plotted against dimensionless time < = tc]/h .
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At the center of Figure 2.4 is shown the displacement time series after
being low-pass filtered, with a cutoff frequency of 3c1/h . The direct
arrival and three reflected arrivals due to the layer are evident at the
anticipated time intervals, and these multiple reflections show the ex-
pected polarity reversals. The arrival time of a hypothetical, non-
physical reflection from point A of the growing grid is noted by the
arrow. There is no indication in the time series of any spurious re-
flected energy due to the expanding grid.

The Fourier transform of the free surface displacement was ob-
tained using an FFT. Its modulus is plotted against dimensionless fre-
quency, fh/c] » as a solid line at the bottom of Figure 2.4. The
highest frequency plotted represents a wavelength of 6.7ax 1in the low-
velocity layer. For comparison, the corresponding analytic solution for
the continuum problem is plotted as a dashed 1ine. The six resonance
peaks in the analytic solution are well reproduced in shape and ampli-
tude, with errors of at most a few percent in amplitude. The slight
shift in frequency of the resonance peaks relative to the analytic so-
lution is due not to the expanding grid, but to the dispersion relation
for the uniform portion of the grid. For example, the sixth peak corre-
sponds to a wavelength of 4h/11 , for which L = 80/11 . Equation
(2.2) predicts a value %ﬁ-sin'](n sin E& for the ratio of the frequen-
cy of this peak in the numerical solution to that in the continuum solu-
tion. For n < .5, this ratio is about .97, which is exactly the ob-
served freguency ratio. It appears that the expanding grid with damp-
ing has only slightly disturbed the numerical solution in the region of

uniform, undamped grid.
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Good results have also been achieved in two dimensions, using
damping with a 1.1 grid growth rate in each dimension, outside the
region of interest. Some examples appear in Chapter 3, along with
analytic solutions for comparison.

This method relies for its success on a judicious combination
of grid growth rate and viscous damping. Figure 2.5 shows the result of
attempting to solve the above problem using the same grid, but eliminat-
ing the viscosity in the expanding grid. After the first arrival, the
time series is swamped by spurious reflections from the expanding grid.
The amplitude spectrum of the numerical solution bears no resemblance
to the analytic solution. Figure 2.6 shows the result of retaining the
viscosity, but increasing the grid growth rate from 1.1 to 1.2. The
spurious reflections are less severe than in the previous case, but they
still obscure the later arrivals and considerably distort'the spectrum.
These examples emphasize the need for caution in employing non-uniform
grid.

Another approach to the problem of grid finiteness which should
be mentioned is that of Smith (1974). In this approach, first order re-
flections from plane boundaries are rigorously eliminated}by averaging
independently computed solutions for homogeneous Dirichlet and Neumann
boundary conditions. However, the method requires 2" independent
numerical solutions, where n 1is the number of boundaries at which re-
flection cancellation is necessary, and the procedure does not eliminate
higher order reflections (those waves which have impinged upon an arti-
ficial boundary more than once). It is thus equally effective, and re-

quires an equivalent computing effort, to simply use 2" times as much
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grid for a single solution. When computer storage, rather than number
of computing operations, is the governing constraint, Smith's procedure
may be advantageous. In the work presented here, however, in which
storagé Timitation is not an important constraint, the procedure is

inappropriate.
2.4 TIME SERIES FINITENESS

Frequently, the most illuminating representation of a finite
element solution to a wave propagation problem is in the frequency
domain. One reason for this is that unfiltered time domain solutions,
if broad band, are obscured by high frequency ringing, in consequence of
numericalvdispersion and the cutoff phenomenon. Low-passing the time
series inevitably attenuates frequency components which have been accu-
rately computed in the finite element calculation. In addition to this
consideration, it is frequently spectral informatijon which is most use-
ful for engineering interpretation. Also, analytical results are more
commonly available for steady state problems than for transient problems.
Exact and approximate analytical solutions are extensively used in subse-
quent sections of this study to verify and extend the numerical results:
thus, accurate Fourier transforms of the finite element time series are
essential.

Dispersive effects of the grid 1imit the attainable frequency
domain accuracy in two distinct ways. The first is fundamental: since
wavelengths shorter than about six element dimensions travel at sub-
stantially below their continuum speeds, the Fourier transform of a nu-

merical solution will be a poor representation of the continuum solution



at frequencies corresponding to shorter wavelengths. The second is
troublesome, but not fundamental:; even when a continuum solution
has a short transient time, the numerical dispersion results in a very
Tong non-zero time series for the corresponding numerical solution.
Thus, while it may be a good approximation to assume that the continuum
solution is zero outside a given time interval, it may_be a poor approx-
imation to assume that the finite element solution is zero outside the
same interval. The dispersed wave train at late time consists of high
frequency components which are inaccurately computed anyway, and which
we shall ignore in the Fourier transform. But truncating this wave
train in the time domain can result in distortion of the transform with-
in the Tow frequency band in which we have a right to expect accuracy.
Figures 2.7(a), (b), and (c) show the effect of truncation for
the one-dimensional problem discussed in Section 2.2: an applied dis-
placement impulse, observed at a distance of 20 element dimensions.
The computed time series is shown in (a). The modulus of its Fourier
transform is shown in (b). The transform was obtained by appending
zeros to the series to give a total length approximately seven times
that of the computed series, then taking a digital Fourier transform of
the augmented series. The transform utilizing the entire computed se-
ries is evidently a very accurate representation of the continuum solu-
tion. Figure 2.7(c), however, shows the result of truncating the series
at point B, then appending zeros as previously. Spurious oscillations
arise in the transform, and are not confined to the vicinity of the cut-
off frequency, but persist down to zero frequency. A dimensionless fre-

quency of .17 corresponds to six elements per wavelength.

22



40~ ? ? TIME SERIES
_ i
= =
wl
s ]
[¥0]
I 04
-}
3 J
@
2 i
-40 T T T T T T T T 1
0 40 80 120 160
. DIMENSIONLESS TIME (tc/Ax
w
o
o ]
=
-
T TRANSFORM OF
2 . " ENTIRE SERIES
-
Ao ¢
[0 4
}—
[&)
W
a.
(7))
0 H i I i i 1] I 1
2—
W
o
o }
=
g TRANSFORM OF SERIES
z . TRUNCATED AT B
-
<t
jo 4
—
Q
w
Q.
w
0 1 f 1 T i i 1 ]
2—
wl
Q
o }
g
g TRANSFORM OF SERIES
= _\} EXTRAPOLATED FROM B
S BY LINEAR PREDICTION
<g
s o4
[
Q
Ll
a.
n
0 [ T 1 li T [ [ 1
o 4 2 3 4 5 8 .7 .8

DIMENSIONLESS FREQUENCY (f Ax/c)

Figure 2.7. Comparison of the frequency-domain effects caused by tem-
poral truncation and linear prediction, respectively, of finite element
transients. The time series is the displacement observed in a one-
dimensional grid at 20 elements distance from an applied displacement
impulse.



24

As Figure 2.7(b) demonstrates, we can get acceptable results in
the frequency domain if we are willing to continue the numerical calcu-
lation until the time domain oscillations die away. However, to in-
crease the duration of the calculation requires increasing the spacial
extent of the grid as well, since grid reflections may act as a worse con-
taminant of the Fourier transform than temporal truncation. As a result,
increasing the time duration by a factor of r requires an increase in
computing effort of a factor of r(n+]) , where n 1is the number of
spacial dimensions in the grid.

Unwilling to compute, at considerabic expense, a lengthy dis-
persed wave train containing essentially no useful information, I prefer
to terminate the computation once the physically significant part of the
waveform has been generated. To avoid the truncation problem, I have
tried continuing the time series in a fsmooth” manner. A successful
means for doing so is linear prediction. In Appendix III, a prediction
procedure is outlined which is adequate for dealing with the truncation
problem. Ignoring the part of the signal to the right of B, we apply
the approach of Appendix [II to the portion of the waveform in Figure
2.7(a) between points A and B. Then we extrapolate the series from B,
to the same total length used to obtain (b) and (c). The transform of
the resultant series is shown in Figure 2.7(d). The spectral amplitude
is flat throughout and well beyond the band of interest. The prediction
has resulted in a very large, spurious spike in the transform right at
the cutoff frequency; where it does no harm. (The top of the spike has
been cut off to facilitate plotting; its actual amplitude is nearly 5.)

This scheme appears to provide a successful means of avoiding truncation
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error without sacrificing any of the usable bandwidth of the solution.

As a second example of the linear prediction approach, we con-
sider one of the problems treated in detail in Chapter 4: a rigid,
cylindrical inclusion (representing a structural foundation) in a half-
space, subjected to impulsive horizontal displacements. (The cylinder
diameter is a and its height is 2a.) A finite element calculation is
emp]byed to determine the net horizontal force imparted to the half-space,
as é function of time, by surface tractions. We wish to determine the
Fourier transform of this net force. The force time éeries turns out
to be very rich in high frequencies compared with the input displacement
impulse. Since the high frequency waves have very low numerical
velocities, the signal rings strongly at late time; thus, the truncation
problem is severe.

The time series of force was computed to a time sufficient for
a shear wave to propagate 4a, which gave a series of 175 terms. Omitting
the first 20 terms from the fitting process; a predictor of 20 terms was
obtained for this series. The solid curve in Figure 2,8 is the real part
of the Fourier transform (the “stiffness coefficient" defined in Chapter
4) obtained by adding 1873 zeros to the 175 term series and taking the
digital Fourier transform of the extended series. The dashed curve was
derived by extrapolating 1873 terms beyond the initial 175 and digitally
Fourier transforming the extended series. The highest frequency shown
corresponds to an S wavelength of seven elements. It will be evident from
the results in Section 4.8 that the dashed curve is a more accurate repre-
sentation of the stiffness coefficient than is the solid curve. The
prediction technique has been very effective in eliminating the truncation

error, which had seriously obscured the details in the transform.
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14 ———— transform of truncated series

—————— transform of extrapolated series
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Figure 2.8. Comparison of truncation and prediction effacts for the hori-
zontal stiffness coefficients of an embedded cylindrical foundation.
Solid curve was obtained by extending the computed time series with
zeros; dashed curve was obtained by extrapolating the computed time
series using linear prediction.
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Distinct from the problem of truncating the numerically dispersed
wave train is the problem of truncating a physically meaningful signal.
If the continuum solution to a problem has a long decay time, it is
likely that a given finite element calculation will not encompass the
entire time interval over which the continuum solution deviates signifi-
cantly from zero. In general, we cannot expect the entire signal to be
predictable from a given finite time sample. For eXamp]e, there may be
a distant reflector in the elastic medium which gives rise to a late-
time pulse, which would be unpredictable (without actually incorporating
physical information into the prediction method). On the other hand,

a large class of physical problems exhibit decaying, oscillatory behavior
as a function of time. We anticipate that prediction will be fairly
successful for such signals. The basis for this expectation is the fact
that a Tinear combination of exponentially damped sinusoids is predictable
to high precision by the procedure of Appendix IV; this is true even when
the samp1é from which the predictor is generated contains only a fraction
of a cycle of some of the sinusoids. (An example of a physical problem
which has an exponentially damped sinusoidal solution as a function of
time is the displacement in an elastic full-space due to a pressure

pulse in a épherica] cavity. Jeffrey's analytic solution is given in
Bullen (1963), p. 76.)

As a numerical example, we again examine a problem dealt with in
Chapter 4. This time we determine the net torque, about the axis of
symmetry, imparted to a half-space by a rigid hemispherical inclusion.
The inclusion is subjected to an impulsive twist about the axis of

symmetry (see Section 4.7 for a detailed discussion of this problem).
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Our objective in this case is to determine from the torque a "radiation
damping coefficient"; this quantity is defined as the imaginary part of
the Fourier transform, divided by frequency. The time series of torque
was computed up to a time sufficient for a shear wave to propagate 2.2
nemisphere radii. In this case, this is a time series of 150 terms. In
generating a predictor, the first 20 terms, containing the very high
amplitude pulse at the onset, were omitted. From the remainder, a pre-
dictor of 20 terms was determined. Figure 2.9 shows the analytic solution
(from Luco, 1976a) for the radiation damping coefficient as a solid line,
plotted against dimensionless frequency. The large dashes give the
numerical solution derived from the computed series by adding 1898 zero
terms to the series and taking the digital Fourier transform. The small
dashes give the numerical solution derived by extrapolating the series
and taking the digital Fourier transform. The improvement, especially

at low frequency, is quite significant. Simply truncating the time
series results is considerably overestimating the Tow frequency

radiation damping.
2.5 CONCLUSIONS '

Examination of analytical and numerﬁca] results desc}ibing wave
propagation in a one-dimensional grid demonstrates the wavelength-Timited
response of the discrete system. We can expect accuracy for frequencies
corresponding to a six-element wavelength of the most slowly propagating
wave. For higher frequencies, the phase and group velocity reductions
begin to significantly corrupt the solution.

Even very modest values of artificial viscosity can grossly
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Figure 2.9. Truncation and prediction effects on the radiation damping
coefficient of an embedded hemispherical foundation: comparison of
the exact continuum solution (~—) with numerical solutions obtained
by: i) adding zeros to the finite element transient and Fourier trans-
forming (—— —) and by, ii) extrapolating the finite element
transient and Fourier transforming ( - - - - ).
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attenuate frequency components which are quite accurately computed in the
undamped case, Thus, for linear problems, numerical solutions should be
computed without using damping within the region in which the solution

is of interest. The computed time series can be low-passed for examina-
tion in the time domain.

Discontinuities in element size generate reflections which will
contaminate the numerical solution, Outside the region of the grid in
which accuracy is required, the element size can be gradually increased
to accommodate the outward propagating waves, provided care is taken to
progressively damp out the short wavelengths. A ten percent growth rate
in each grid dimension, combined with constant damping in the growing
~grid, gives nearly reflection-free results. Higher growth rates are less
successful when constant damping is used. However, it may be possible to
increase the element size more aggressively if a more sophisticated
damping strategy is employed.

The prediction technique introduced in this chapter and in
Appendix IV has proven to be a very useful tool for the Fourier analysis
of numerically computed, transient waveforms. Motivation for the
approach derives from physical considerations (the decaying, oscillatory
behavior characteristic of radiation—damped systems) combined with mathe-
matical considerations (the predictability of exponentially damped
sinusoids). The technique deserves further investigation, and might

benefit from theoretical and computational refinement.



CHAPTER 3

FINITE ELEMENT CALCULATIONS FOR THREE-DIMENSIONAL WAVES IN AXISYMMETRIC
GEOMETRIES

3.1. INTRODUCTION

The purpose of this chapter is to illustrate the capabilities and
accuracy of the finite element method for treating three-dimensional
(linear) seismic waves in axisymmetric geometries. In Appendix II, I
describe extensions of the finite element method to deal with such
problems. Briefly, we exploit the separability of the elastodynamic
equations, employing a Fourier series expansion of the azimuthal depen-
dence of displacement, body force, and surface traction components.

Since there is no interaction between terms in the expansion of different
azimuthal order, we obtain what is essentially a two-dimensional problem
for each azimuthal order. The development in Appendix II presumes
isotropy of the medium, but this is not a necessary restriction.

In this chapter, Xy» X5, X5 denote Cartesian coordinates, and
subscripts 1, 2, 3 designate vector and tensor components in Cartesian
coordinates. r, 6, z denote cylindrical coordinates, with z = X35
rcos § =X, rsin g =y ; subscripts r, g, z designate the physical

components of vectors and tensors.
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3.2. APPLICATION TO A HOMOGENEOUS HALF-SPACE

In this section, I apply the method of Appendix II to compute
the free surface displacement due to a buried double couple in a uni-
form half-space. Results are presented for the case in which the
null axis of the double couple is vertical and the source is located on
the z axis. In this case, only the n = 2 term in the Fourier expansion
is required. Johnson (1974) presents a complete solution to this
problem, obtained by the Cagniard-de Hoop method. Our objective will be
to assess the accuracy of the finite element method by comparison with
the Cagniard-de Hoop solution.

Figure 3.1 gives the free surface displacement éomponents, as a
function of time, obtained at several distances from the buried source.
The Cagniard-de Hoop solution appears as solid curves, the finite
element approximation as dashed curves. The finite element results have
been low-passed to remove most of the spurious oscillations imposed by
grid dispersion. Results are scaled to represent a source depth of 5 km
and a P wave speed of 6 km/sec. (Results do not scale with Poisson's
ratio, which is .25 in this calculation.) The displacements have been
rotated to represent an observer in acompressionalquadrant, at an
azimuth of 22.5 degrees from a nodal plane. The source time-function
is a ramp of 1 second duration. Epicentral distances shown are 5, 10,
15, 20, and 25 km. Results scale by u/MO, the ratio of shear modulus
to source moment. |

The agreement is very good, overall. Long-period amp1i tudes,
as well as static levels, are almost identical in the two solutions.

Arrival times of body- and surface-wave phases are very accurate in the
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finite element solution. The decay of the near-field P wave with
increasing epicentral distance is evident in the transverse component;
the development of the Rayleigh wave in the radial and vertical compo-
nents with increasing distance is also evident, and in good agreement
with the exact solution.

The discrepancies are easily interpretable in terms of the basic
Timitations of finite element techniques (we note that 1 second is the
time for an S wave to traverse 7 elements): (i) Sharp peaks and dis-
continuities in the "exact" solution are smoothed by the finite element
solution. This is what is expected in light of the wavelength-1imited
response of finite element grids; (ii) In a few cases, some low
amplitude oscillations from the grid-dispersed wavetrain have survived
the low-pass filtering. This is evident, for example, in the transverse
component at 5 km distance, immediately following the S wave arrival
(the positive pulse). This dispersive phenomenon appears to be more
‘troublesome in the transverse component than in the radial and vertical
components. This is to be expected, since S waves predominate in the
transverse component, and S waves have a shorter wavelength at a given
frequency than do P waves; (iii) In some cases, some very small ampli-
tude oscillations, attributable to reflections from the growing grid,
are evident in the finite element solution at late time. For example,
the radial and transverse components at R = 10 show slight disturbances

arriving at approximately 12 seconds.
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3.3. APPLICATION TO A LAYERED HALF-SPACE

As a more complex application, I have computed the free surface
horizontal displacement due to a buried dislocation in a horizontally-
‘layered halfspace. The dislocation (which is idealized by confining it

to a point x_) is represented by the equivalent force density

N
7 8(x - xg)s E is the 2™ order elastic tensor, n denotes the

-na: k-
fault normal, a is the product of the slip vector aﬁd the fault area
(Burridge and Knopoff, 1964). (If ﬁ.is said to be directed from the
negative to positive side of the fault, then a is the displacement of
the positive side relative to the negative side. n and 3 are assumed
orthogonal.)

Several source depths and epicentral distances are considered
in this calculation. Because several source locations are of interest,
the most economical treatment of this problem exploits the fact that a
single finite element calculation necessarily generates displacements
and stresses throughout the numerical grid at each time step. We make

th

use of the fact that the i~ component of displacement us at a point x

due to application of the above force system is given by

Ui(é, t) =.}r§to n a (to) : Iﬁ(éﬂ,_ﬁ, t - to).(3.1)
0

where Ij(éo, X, t) is the stress tensor at X, at time t, due to a point

force of unit amplitude with delta function time dependence applied in

the i direction at x. In a horizontally layered medium, we can take x

to be on the X5 axis; if the i direction is horizontal, we require only

the n = 1 term in the azimuthal Fourier expansion to find Iﬁ. One finite

element calculation gives Ij for all x, in the numerical grid (a second
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finite element calculation, with n = 0, is required to obtain the
vertical displacement).

Figure 3.2 shows the source-receiver geometry employed and the
elastic parameters assigned the earth model, which consists of 2 layers
over a semi-infinite halfspace. (This model is a simplification of the
layered’structure given by Eaton et aZ. (1970) for the region of the
1966 Parkfield, California earthquake; Day and Archuleta (1977) employ
the current results in synthesizing strong motion records recorded for
that event.) Figure 3.3 shows the computed horizontal displacements at
the free surface (obtained by Equation 3.1) for a strike-slip source.
Results are depicted for two source depths, 1 km (on the left) and 5 km
(on the right). Receivers are at 5, 15, 25, 35 kilometer epicentral
distances, and are in a compressional quadrant, at an azimuth of 22.5
from a nodal plane. The source time-function is a ramp of 1 second
duration. Results have been filtered to remove numerically generated
ringing, with a passband of 0 - .5 Hz. Solid curves are the radial
components of displacement, dashed curves are the azimuthal components.
The scale factor is the ratio of shear modulus in the source layer, u,
to source moment Mg.

Two features are immediately evident in the waveforms in Figure
3.3. First, the azimuthal component is the dominant one, except at
very short epicentral distances. Second, the effect of source depth is
pronounced. Peak amplitudes are 50% larger for the shallow source than
for the deeper source. For the shallow source, the azimuthal displace-
ments are dominated by a rather short period, low group velocity pulse;

for the deeper source, the signal is more spread out in time, with larger



Figure 3.2. Source-receiver geometry and earth model, consisting of 2
layers over a halfspace.
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early-arriving phases.

This finite element calculation for a simple layered structure
affords us an opportunity to verify the accuracy of synthetic seismograms
computed by a more conventional seismological technique -- generalized
ray expansion (Helmberger, 1974). In Figure 3.4, a comparison is
made between the two methods for the azimuthal component of displacement
at 15 km epicentral distance from the 5 km deep source. The generalized
ray synthesis was restricted to the SH contribution, neglecting the
near-field P wave contribution to the azimuthal displacement. A fér-
field approximation (Helmberger, 1974) was employed in calculating the
SH contribution. A total of 31 rays was used in the generalized ray
synthesis. Aside from our omission of the near-field P wave, the
agreement is quite good, especially up to about 13 seconds. The ray
expansion is somewhat less successful at late time. This is the
consequence of using only 31 rays; the omitted rays were those with a
large number of reverberations, nence relatively long travel times.

The misfit in the static offset is a consequence of the far-field approxi-

mation in the generalized ray calculation.
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3.4. SEDIMENT CONE IN A HALF-SPACE

In this section; the effect of a sediment cone surrounding the
source region is computed. Figure 3.5 shows the geometry to be
considered. The cone radius is a, its depth a/2, and the source
depth a/4. The P wave speeds in the cone and the half-space are o
and>].71a] respectively; the density is the same in both media.
Poisson's ratio is .25 in both media. The source is the same as in
Section 3.2: a double couple with vertical null axis, having a ramp
function time history of duration .3a/a]. Receivers are located at
an azimuth of 22.5 degrees from a nodal plane, in a compressional
quadrant.

Figure 3.6 summarizes the results for the 3 components of dis-
placement at the free surface, along with the results obtained for a
uniform sedimentary layer of thickness a/2 and a uniform half-space of
sedimentary material. The influence of the sediment cone is greatest
for the azimuthal component of displacement. At epicentral distances
of .5a to .75a, a focussing effect is present. Peak displacement in
the azimuthal component is amplified by up to nearly 50 percent due to
the presence of the sediment cone. The duration of ground motion is
considerably increased for the conical structure; reverberation in the

sediments leads to generation of a long period pulse at late time.
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Figure 3.5. Earth structure representing low-rigidity sediments in the
source region, and the source-receiver geometry employed in the finite
element calculation.
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3.5. CIRCULAR SHEAR CRACK

In this section, I compute the displacements generated by a
shear stress relaxation on a circular fault plane in a homogeneous,
isotropic, unbounded elastic medium. This is the problem treated by
Madariaga (1976) using a finite difference approach. Following the
above reference, the problem will be formulated so as to involve only
the n = 1 term in an azimuthal Fourier expansion.

We need to define: 1) the initial state of the medium; i) the
evolution of the fault plane; and iii) the boundary conditions on the
fault plane.

i) For time t less than zero we assume that an equilibrium state

of stress exists, given by the constant stress tensor g?:

a(x, t) =g° for t <0 for all x

where o° is assumed to be of the form (3.2)
o’ = o1 % %5 - oy 23 %3,
with Ty and c? constant and positive.
Displacement and velocity are everywhere zero for t < 0.
ii) The fault plane, designated z(t), is a circular crack in the
Xy = 0 plane whose geometry is prescribed. It initiates at the origin
at t = 0, and expands at a prescribed rupture velocity v until it

achieves a radius a, at which time it ceases to expand. Thus, the sur-

face z(t) consists of all x such that the following two expressons hold:

x| < min (vt, a) H(t) (3.3)

and
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X - X3 = 0. (3.4)
ii1) On £(t) we permit a tangential dispTacement discontinuity

§j§3 t), and require continuity of the normal displacement:

s(x, t) = Tim u(x + eX3) - u(x - ex;)s X on £,(3.5)
g0

X3 §L5, t) =0, xonz, (3.6)

with e > 0. We also require continuity of tractien. Initially, we pre-

scribe the traction vector _23 - g on £. This vector consists of a normal
component oy 83 whicn is independent of time (due to symmetry and the
condition (3.6)), and a sliding friction component which is assumed to

be proportional to 9y and to act in opposition to the slip velocity s:

s(x, t
~X3 v a(x, t) = o |%3 - wg _§£§;__2_} ]
) 15(x, t)] ] for xon z(t).

(3.7)
Ue is the sliding friction coefficient, assumed to be a constant.
Equation (3.7) applies at a given point on £ until the slip velocity goes
to zero, at which time we cease to enforce Equation (3.7), and instead
enforce continuity of velocity. Designating as z'(t) that portion of

L on which the slip velocity has reached zero, we have the condition
éﬂé) t) =0 for x on z'(t). (3.8)

Three distinct numerical problems are associated with stopping
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the fault. The first is specific to this circular fault prqb]em:

the criterion that the fault locks when the s1ip velocity goes to zero
will in general violate the circular symmetry which we require of the
boundary geometry. Unless slip everywhere on I is in the direction of
the prestress (x2 direction), points on £ at different azimuths but the
same radial distance from the origin will lock at different times. In
order to avoid a fully three-dimensional treatment, I have assumed,
following Madariaga (1976), that slip in the xq direction is negligible
in its effect on the healing of the fault. The approximation is made
that sTip is arrested at all azimuths e at a given distance r from the
origin when the radial component of the slip velocity at r goes to zers.
With this approximation, the above formulation requires only the n = 1
term in an azimuthal expansion for its finite element solution.

The second numerical consideration related to healing the fault
relates to numerical dispersion. Although we treat the medium as linearly
elastic, the boundary condition on £ is non-linear. High frequency oscil-
latory disturbances due to numerical dispersion can spuriously trigger
the stopping of the fault, corrupting the solution at all frequencies.
The remedy employed here was to include viscous damping in the finite

-element formulation. An alternative would be to treat the problem
without damping the high frequencies, but retaining a running average
of the slip velocity at each point of £. This smoothed version would be
used to establish the time of stopping.

The third numerical difficulty associated with healing the fault
according to the above prescription is one which applies only to the

fully three-dimensional fault problem. The difficulty is that the slip
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velocity at a point on ¢ is known only at discrete times. When the slip
has only one directional component, as in two-dimensional shear crack
problems, the presence of a zero in the slip velocity can be detected

» by the fact that the slip velocity changes sign. Similarly, in the
current circular fault problem, we need only determine when the radial
velocity changes sign (by virtue of the approximation discussed above).
In general three-dimensional shear crack problems, however, the slip
velocity has two components. The fact that either or both components
change sign does not imply that the slip velocity has passed through
zero.. Tne appropriate numerical implementation of our stopping criterion
in this general three-dimensional case is discussed in Appendix Iy . A
relationship is exhibited between the numerical treatment of kinetic
friction (Equation (3.7)) and the arrest of sliding.

The above circular fault problem, with the approximation that
healing is governed by the radial component of the slip velocity, was
treated by the finite element method. A second approximation3 which is
not essential to the symmetry of the problem, is made in this case to
simplify the scaling of the results; we make the approximation that fric-
tion always acts in the x, direction. That is, we replace s/ls| in
Equation (3.7) by 22. With this simplification, the solution depends on
the difference o$ = Oy Mf oo but not on the two terms separately. The
rupture velocity v was taken to be .98, where g is the shear wave speed
of the medium. o« is the P wave speed. A Poisson's ratio of .25 was
assumed. Figure 3.7 displays the X, component of displacement on the
fault (positive X3 side), plotted as a function of time for several posi-

tions along the X5 axis. This solution is shown by the small crosses; the
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solid lines give the analytic solution obtained by Kostrov (1964) for the
self-similar problem of a circular fault which expands at constant rupture
velocity without bound (the analytic curves have been truncated at
the top of the figure). These results have been normalized by the ratio
u/cEa, whefe u is the shear modulus, a is the ultimate fault radius, and
9 is the difference o$ - OgMee The finite element solution shows the
expected agreement with Kostrov's solution prior to the arrival time
in the numerical solution of edge effects generated by termihating
the rupture at a radius a.

Figure 3.8 gives the Xg and X3 components of particle velocity
on the fault as a function of time and position along the x, axis. (&2
is 1/2 the X, component of slip velocity éz.) By symmetry, the X4
component is zero along the Xo axis. Since these results have
been obtained by similar methods and discussed in detail by others
(Madariaga, 1976; Archuleta, 1976), the discussion here will be very
brief. We note the increase of peak slip velocity in the direction of
rupture propagation, as well as the accompanying focussing evident in the
transverse component of velocity on the fault plane. We further note
that healing, which initiates at the outer edge of the fault, propagates
relatively smoothly inward toward the origin. The representative
velocity of the healing "wave" is roughly g, but it appears that the
nealing does not actuaily spread at constant velocity. The onset of
healing generates a rather Tong-period, negative phase in the transverse
component, propagating toward the origin. Slip is finally arrested at
the center of the fault, and the last radiated energy appears as a long-

period, positive pulse in the transverse component.
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CHAPTER 4
RADIATION AND SCATTERING OF SEISMIC WAVES FROM EMBEDDED FOUNDATIONS
4.1. INTRODUCTION

The coupling of seismic waves into structural vibrations can be
conveniently analyzed by partitioning the soil-structure system at the
interface between the structural foundation and the soil. This chapter
deals with how waves are scattered and radiated from embedded foundations.
The results are_obtained in a form that is suited for combining with the
analysis of an overhead structure to produce interactive response to
earthquake ground motions.

Basically two processes must be investigated to determine how a
foundation couples seismic waves and structural vibrations: a) the pro-
cess by which forces that are exerted on the foundation by the pverhead
structure radiate seismic energy, and b) the converse process by
which incoming seismic waves scattered by the foundation exert forces
on the base of the structure. The radiative process can be character-
ized by an "impedance matrix"; the scattering process can be
characterized by an "input motion". For only a few foundation geometries
have both radiation and scattering problems been treated. Luco (1976b)
analyzed the torsional response to SH waves of a rigid, circular
foundation on the surface of a homogeneous, elastic medium. Approxi-
mate analytical methods have been applied for treating other flat
foundation geometries (Wong and Luco, 1977). However, little is known
about the effects of foundation embedment. Wong and Trifunac (1974)

have analyzed the two-dimensional case of an infinitely long foundation
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with semi-elliptical embedment, in the presence of SH waves. Three-
dimensional results for embedded foundations are limited to the
torsional response to SH waves in a homogeneogs, elastic medium. Luco
(1976a ) obtained the torsional response of a nemispherical foundation,
and . Apsel and Luco (1976) generalized the solution to include founda-
tions of ellipsoidal shape.

Approximate methods are needed for investigating horizontal,
verti;a] and rocking displacements of embedded foundations, and for
analyzing more complex geometries. One approach involves approximations
in the wave mechanics of the earth medium and in boundary conditions
along the contact zone between the medium and the foundation (Beredugo
and Novak, 1972; Novak and Beredugo, 1972). Finite element methods, the
approach of this study, offer considerable potential for treating comp lex
embedment conditions. However, previous finite element analysis has not
proven effective for reproducing analytical results {(Luco et aqZ., 1974;
Hadjian et al., 1974; Wong, 1975). The basic limitation of finite ele-
ment approaches stems from the inability of a numerical grid of finite
extent to represent an extended earth. A significant improvement in
the method occurred with development of boundary conditions that remove
seismic energy at the horizontal extremes of the grid. Lymer and Waas
(1972) implemented boundary conditions for simulating a horizontally un-
bounded medium acting in anti-plane strain, and Waas (1972) and Kausel
et al. (1975) extended this procedure to a cylindrical geometry. No
satisfactory conditions have been developed for allowing seismic energy
to pass tnrough the bottom boundary of the grid, however. As a result,

finite element {reatments fail to reproduce some aspects of analytical
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solutions, notably the radiation damping at Tow frequencies (Kausel

and Roesset, 1975). It also appears that there is some difficulty -
in prescribing the incoming seismic waves. The conventional procedure

of specifying free-field particle motions along a grid boundary to

simulate incoming waves neglects the existence of a scattered wave field,

which arises in the presence of the structure.

This chapter describes a time domain finite element procedure
for computing the response to seismic excitation of a three-dimensional,
rigid foundation embedded in an elastic half-space. Because the
analysis is performed in the time domain, the influence of grid boun-
daries is totally eliminated by completing the transient solution prior
to the arrival of reflected waves from those boundaries.

In Section 4.3, I characterized the foundation response in terms
of the two matrices -- impedance and input motion. Sections 4.4 and 4.5
define the mathematical problems whose numerical solutions yield the
impedance and input motion. These are designated the "radiation problem"
and "scattering problem". In Section 4.6, I derive reciprocal relation-
ships which in many cases obviate the need to numerically solve the
scattering problem.

Subsequent sections present and discuss results obtained from
finite element solutions to these mathematical problems, Applications
are limited to axisymmetric geometries, for which the Fourier expansion
technique is applicable.

The method is applied to the case of a hemispherical foundation
embedded in a homogeneous elastic half-space, a geometry for which some

aralytic solutions are available. The torsional impedance is compared
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with the exact analytic solution obtained by Luco (1976a). Next we obtain
the complete impedance matrix for all the rigid body mades of the hemis-
pherical foundation. Then the input motions are presented for horizon- -
tally incident, plane SH waves, and for vertically incident. plane P and S
waves. The torsional response to horizontally incident SH waves is com-
pared to Luco's analytic solution.

Next, the effect of embedment depth is examined. I analyze the
response of cylindrical foundations with varying aspect ratios to both
vertically and horizontally propagating seismic waves. The applicability
of high frequency and low frequency approximations is examined. A high

~ frequency approximation is obtained which is very accurate over a broad

frequency range.



I use the following convention for the Fourier transform pair

f(t), Flu):

/ f(t) e Tob gt

~0

—;— fF(w) eiwt dw .
T

-

Flw)

f(t)
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4.2 NOTATION

Notation for this chapter has been devised with the intention
of differentiating the continuum mechanics of the problem from the
rigid body mechanics of the foundation.

Tensor notation (Malvern, 1969) is used in this chapter to des-

cribe the geometry and motion of the continuum. Vector and tensor
quantities are denoted by underlining. X, y, Z and r, 8, Z are unit
vectors tangent to the coordinate curves in Cartesian and cylindrical
coordinates, respectively.

Matrix notation. is.reserved for the rigid body motion of the
foundation. Square brackets [] denote a six by six square matrix, and
braces { } denote a one by six column matrix. Matrix components are
denoted by subscripts.

The numerical computations in this chapter are performed in
the time domain; however, the numerical results are generally presented
as frequency responses. When a function of time and its Fburier trans-
form must both be referred to in the text, a lower case symbol is used
for the time function and an upper case symbol is used for the Fourier
transform. The following transform pairs are explicitly used in the

text:

[«] (K] Impedance matrix
v} {T} generalized force column matrix
g z stress tensor

U displacement vector
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4.3 RELATIONSHIPS FOR LINEAR SOIL-STRUCTURE INTERACTION

We consider a rigid foundation embedded in an elastic medium
and supporting an elastic superstructure. The harmonic rigid body motion
of the foundation, at angular frequency w, can be described by a
“generalized displacement” {A(w)}eiwt. As illustrated in Figure 4.1,
{a(w)} consists of the three displacements by Ay’ A, along orthogonal
coordinate axes and the three small rotation angles<®x,<®y, °, about the

coordinate axes; that is,

- : T AW
{a} = (Axt by bys 85 B 2,) . (4.1}
int

The generalized force {r{w)}e consists of the six corresponding
forces and moments that the foundation applies to the soil. The base

motion {a(w)} is Tinearly related to {r(w)} by the expression
{r(w)} = [Blw)1{alw)}, : (4.2)

where the matrix [B] depends only on the dynamics of the superstructure
(including the inertia of the foundation).
The compliance of the soil to these overhead forces is expressed

by the relationship
18 (o)} = [C(w)1r(w)} , (4:3)-

where the superscript ¢ indicates that the motion occurs in the absence

of seismic excitation. [C] is the six by six complex compliance matrix



Figure 4.1. Problem geometry and coordinate system for analysis of
embedded foundations.
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for the foundation. Since we will find it convenient in subsequent

sections to work with [C]-], we also introduce the complex impedance

matrix [K] defined by
(Kl =[c17' . (4:4)

The foundation motion due torseismic excitation but in the absence of
overhead forces, is denoted by {A*(m)}eiwt and designated the "input
motion". Both {A*} and [C] depend on the soil model, including the
geometry of the soil-foundation inter?ace. {A*} depends on the nature
of the incident seismic disturbance as well. {ao*} can be interpreted as
the translation and rotation, in response to a given seismic disturbance,
of a rigid, massless inclusion coinciding with the founcation.

The actual foundation motion {A} is the sum of {a*} and {AO}:
0
= *
{a} = {8*} + {a7} . . (4.5)
Equations (4.2), (4.3), and (4.4) yield the expression

(a} = ([17 - [CIB]) ' iaxy (4.6)

for {a} in terms of the input motion {a*} ([I] is the identity matrix).
Thus, when both {a*} and [C] (or [K]) have been evaluated, Equation (4.6)
yields the total foundation motion, including the effects of interactions

between structural vibrations and seismic waves (long and Luco, 1977).
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4.4 THE IMPEDANCE MATRIX

To find the foundation impedance matrix [K(w)], which describes
the steady-state force-displacement relationship of the foundation for
externally applied forces, we solve a corresponding transient problem
to obtain an "impulse response matrix" [«(t)]. [x(t)] represents the for-
ces applied tao the suil due to impulsively applied displacements of the
foundation. [K(w)] is related to [«(t)] through Fourier transformation.

Determination of each column of the foundation impulse response
matrix [«(t)] requires the solution of a mixed boundary value protlem,
as sketched in Figure 4.1. A semi-infinite elastic medium V is bounded by
the surface SO + Su, where Su coincides with the welded foundation
contact and S(j corresponds to the earth's surface. The position vector
is denoted by x. f(x) denotes the unit vector normal to 5, * S,» and
is directed out of V. We define a displacement vector Qj(g) which, for

th

X on S, corresponds to the j~ rigid-body mode of S . Using X, ¥, 2

to denote unit vectors aligned with the coordinate axes, the functions

Qj(z), j=1, . . .6, corresponding to Ao Ay, 8,5 By ?y’ 9,5 are
given by
2(x) = % g(x) = xx X
2(x) =¥ (x) = - xx§ (4.7)
85(x) =z Pe(x) = - xx2

gd(é, t) and gjfé, t) denote the displacement vector and stress tensor,

respectively, in V + SO + Su' We require that gj and ;5 satisfy
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Ej<§; t) =§13(5)5(t) for x on S
= u
EJ(X) t) < nlx) =0 for x on So (4.8)
82
Voooixs t) - p(x) S u(x, t) =0
- st 9 :
for x in V
g5(x, t) = E(x) [ ui(x, t) + us 9l t)]
Cau,
| Ej(é; t) = 5%1-(53 t) = 0 when t < 0 for all x

where p is the density, E is the fourth order elastic tensor, and §(t) is
the Dirac delta function. The first equation represents displacement
boundary conditions on the foundation contact, applied as an impulse in
time. The second equation is the boundary condition on the free surface.
The third is momentum conservation, and the fourth is the stress-strain
relationship. The fifth equation is the causality condition. Ej and
g; are thus the displacement and stress fields radiated by an impulsive
displacement of the form 2 on Syt

Once Equations (4.8) have been solved for 94 j=1, .. .6, the

components of an impulse response matrix [x{(t)] are given by
30 <[ 800 - o6 8 a0 6. (a9
S .
The impedance matrix [K(w)] is obtained by Fourier transforming [« (%t)]:

k) = S Tee)Ien ot gt (4.70)
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The effectiveness ef this transient analysis procedure is enhanced
by the fact that impulsive displacements are imposed on Su’ rather than
impulsive forces. Impulsive displacements yjeld foundation forces with
short transient times, whereas impulsive forces would produce protracted
displacement responses.. (The damped harmonic oscillator, governed by
U+ 2vd + Wl = T, exemplifies tnis behavior: the force response to an
impulsive displacement is simply s"(t) + 2vs'{(t) + w26(t), while the
displacement in response to an impulsive force is

-——iﬂja———-e'Yt sin(w2 - YZ)%t.) [(t)] is therefore nearly zero,

(mz - Yz)l/2 .
except over a short time interval; thus a relatively short time sample

of [«(t)] gives [K(w)] accurately, even at very low frequencies.
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4.5 THE INPUT MOTIGH

The input motion {a*} associated with a particular seismic dis-
turbance is found by determining the generalized forces {I*} required to
hold Su stationary in the presence of the incident disturbance. Once

{f*} is known, {a*} is obtained from the relationship

{0*(w)} = - [Clw)] {r*(w)} . (4.11)
To find {r*(w)}, which corresponds to a steady-state seismic disturbance,
we solve a transient problem, as in the previous section. A transient
“driving force" {v*(t)} is found, and Fourier transformed to obtain

{r*(w)}.

Free Field Specification

One way to describe the seismic disturbance is to specify the
“free field" displacement and stress which would occur in the absence
of the structure and foundation. We assume that gf and gf are known
and that they obey the equations of motion in V and the free surface
condit;on on SO. We also require that there is a time T such that.gf
and ;%;-aéé Zero on Su for t < Ty

The “scattered field", denoted by<f (x, t) and a%(x, t), is

defined as the difference between the total field and free field:

1=
h

e
)

|

(4.12)

[a
n
Ja
]
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The total displacement u is required to vanish on'Su, so the scattered

field satisfies the equations

gs = - uf on S
= u
cs -n=20 ' on S
- - . g
s 2 (4.13)
vV-g -p—u =0
at ;
inV
CEE (Tl 4T
s BES : .
4 =zp-=0 when t < T for all x

where T, isan arbitrary time prior to the arrival of the seismic

disturbance at the foundation. Once Equations (4.13) have been solved
*

for g?, the components Yj(t) of {vy*(t)} are given as the sum.of a free

field contribution and a scattered field contribution:

vi(t) = fs oo’ + ') - A ds (4.74)

u

The two terms on the right side of Equation (4.74) will be designated

v? and yf, respectively. (r*(w)} is given by the Fourier transform of

{y*(t)}:

()} = (0%(w)} + {rf(w)} (4.15)



where {FS} and {Ff} are the Fourier transforms of {Ys} and {Yf}, respec-
tively. When the scattered field is computed numerically from Equations
[4.13], {r°} will be obtained by numerical Fourier transformation of

{YS}, and {Pf} will be obtained analytically from the free field.

Equivaient Force Specification

As an alternative to specifying the free field, one can specify
the incoming seismic disturbance by giving an equivalent force distribu-
tion f(x, t) which gives rise to the incoming seismic field. This
alternative is convenient when the seismic disturbance has a Tocalized
source near Su; then the seismic disturbance can be generated in the
finite element grid by introducing nodal forces derived from the
equivalent body forces and we can solve directly for the total fields

uand g:

u=290 X on S
- u
gn=0 X on S,
2
E.g__pé._z_i_—__f_ (4.16)
ot .
X inV

= when t < 1 x on S
u=12 0 u

Equations (4.16) are appropriate, for example, when the seismic distur-

bance is an explosion near Su. (Y*(t)} is obtained from g by means of
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Equation (4.14); {r*} is obtained in this case by numerical Fourier

transformation of {v*}.
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4.6 INTEGRAL REPRESENTATIONS FOR THE DRIVING FORCE {y*} IN TERMS OF
THE RADIATED FIELD

Equation (4.9) gives [«k] in terms of the radiated stress fields
a; J=1, .. .6, and Equation (4.14) gives {y*} in terms of the
scattered stress field gf ( and the known free field stress_gf). How-
ever, it is unnecessary to solve both thé radiation problem (Equations
(4.8) ) and the scattering problem (Equations (4.13)) in order to obtain
»[k] and {y*}. The finite element solution to the radiation problem also
yields {y*}, as shown below. This economization results from the fact
that the finite element method generates the displacement at all nodes
in the grid at all time steps. We exploit this apparently excessive
information by means of the principle of reciprocity for elastic systems.

*
To obtain the driving force Y; from the radiated field Ej(é, t),
we begin with the reciprocal theorem (see, for example, Eringen and

Suhubi, 1975, p. 368; Wheeler end Sternborsz, 1968)

b
f, dtde' (-a-v-h

t Z
LZ .
=/dtfd5(x'gw-_w_'gv) - n’
tl S'!
t,

V. w2
+dep(u--—--x-——) (4.17)
at 3t
‘ t

1
governing w, g, h, and v, g, g. In Equation (4.17), w, g, hare

displacement, stress, and body force satisfying



68

(x, t) ——32 (x, t) X
v-og,lx, t)- > (X, t) = - h(x, t
L9y o (x) 42 ( )

in the region V' bounded by the surface S!' with normal n”. Vv, g, g are

another set of fields satisfying

- 2%y
vo-og,(x, t) - p(x) ;—2: (x, t) = - g(x, t)
g, = E(Lyv+yvy) (4.19)

in the same regjon V' bounded by the same surface S'. The integration
limits t; and t, can be chosen arbitrarily. We take w(x, t) = Y (x>t -t),

vix, t)= uf(x, t) + us(x, t), and h = g = 05 V' is the region V, and

$' is S, +S_. Using the fact that g4 = of + 5520 o0n S.» uf+us=0

on S , and y_j(i, t) = 2:(x) §(t) on S, Equation (4.17) qgives

4
&
[dtf ds Q_J-[gs(x t) + o (x,t)] - i s(ty - t)
5
1 u BEf aEI_S
<[ sty 1) - g (o) + e (et
! f S oy
+lul(xt) Futot] ot (x b - )
0
Y (4.20)

Now we choose t] = 1 where fo is an arbitrary time prior to the arrival
at Su of the disturbance uf, and let t2 go to infinity. Since
S L}

u.
au =z
y_s(z(_, t) = =7 (X, t) = 0 when t < Ty and u.(x, t) = #(5, t) =0

5t j
when t < 0, Equation (4.20) reduces to
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3, s f
Sl gy -y - T 1)
0
v 8U_f
+ Hj(53 t, - To) . gz—-(ﬁg TO)] (4.21)

when t > t . By Equation (4.14), the left side of Equation (4.21) is

Y;(to), so we have the desired representation:

* ai' f
e = - f @bl (ot - 1) - il <)

0
v uf

- gj(é, t, =) - 5%-(x, )1 - (4.22)

Q

T3u.
Equation (4.22) 1 i i (h ), o3 .
quation ( ) is valid for all t,, since YJ(tO), =T (x, t, ro),

. *
and gd(gj t, - ro) are all zero for t, < 1,- It gives Yj(to) as a

volume integral over the radiated displacement and velocity fields
au.
u.(gg,to) and 5%1-(5) to), multiplied by the free field velocity and
0

=J
displacement, respectively, where the free field is evaluated at a fixed
time LA prior to its arrival at Su'

As an example of the application of Equation (4.22), we take the '
case of a vertically incident S wave in a homogeneous, isotropic

half space z > 0. We shall express the driving force generated by this

seismic disturbance in terms of the stress fields o5 radiated by the

displacement modes 2 (3 =1, .. .86). The free field (which includes

an incident and a reflected impulse) will be taken to be
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uf= %6t - 278) + 5 ot + 2/e). (4.23)
If Su is confined to 0 < z < a, then we can choose
= -2
Ll (4.24)
Substituting (4.23) and (4.24) into Equation (4.22), we get
PR
e =1 anosk [ 2l (s , + ase)
Z=a
U -
- (x, ty + a/8)] (4.25)
= a. Equation(4.25) can be
Asimple

where the integral is over the surface z
simplified by noting that the two terms on the right are equal.

way to see this is to consider in (4.22) the case where the free field
a at time t = To:

~is a down-going plane S wave initiated at z

!f)
uf’= %—6(t -2t -2/8) when t > 1
= 0 0
n X9
B—t— = '2-—-{ 5(t -2 ’EO - Z/B) when t > T (426)
uf/= Egi-= 0 when t < ¢
el 53t 0

Substituting (4.26) into (4.22) and .using the fact that Y;(to) = 0 for all

j for this down-going free field, leads to the relationship
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[e5]

u. .
g - —d = - X —d
/dA& ot (x, to) g _/ dAx 3z (%, to)
Z=3 zZ=a
(4.27)

*
governing the radiated field. Thus, Equation (4.25) giving Y5 for the

upgoing incident wave, simplifies to

B 2 = 4.28
Yj(to) = o8 J/~ dAR - 53 (X, t0 - a/g). (4.28)

Z=a

Finally, we can rewrite Equation (4.28) in terms of the stress:

* " ~ .
G s [ i sty - ae) 2 (429)
z=a

. . 2 ou . R ou.
(we have used the facts that X - g Z = p8°(x - §EQ-+ z - Sil‘)’ and
that Y is zero when |x| -~ =, so that the integral over the x

ou .

coordinate annihilates the Sig-term). Equation (4.29) 1is particularly

convenient to work with numerically, since the stress tensor is avail-
able throughout the finite element grid at each time step.

Equation (4.22) can be applied several times to the same
radiated field to obtain the input motion for several different forms
of seismic excitation. The result is a major reduction in computing

effort. Another advantage of using Equation (4.22), rather than directly

solying Equations (4.13) for o> and using (4.14), is that Equation
(4.22) does not require that gf be known at all time on' S, as the direct
treatment of Equations (4.13) requires. Thus, if the foundation were

surrounded by, say, a region of soft material representing backfill,



Equation (4.22) could be used to obtain the input motion (by properly

se1ecting-10 to precede the arrival of gf at the region of complexity),

whereas treating Equation (4.13) would be inappropriate in this case.
When the equivalent force specification of the seismic distur-

bance is used, Equation (4.12) leads to the expression

t
2

*

vi(ty) = f dtf dvous(x, t, - t) - flx, 1),

t v (4.30)

as an alternative to Equation (4.22). As an example, applying Equation

(4.30) to the case of a buried explosion at_&o, idealized by

f=96(x - §O)G(t), we get

* -

Tiltg) = 7wy, ty) (4.31)

i in terms of the

as an expression for the driving force component v

radiated field.
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4.7 THE HEMISPHERICAL FOUNDATIOH

I apply the finite e]emént method for axisymmetric geometries,
discussed in Appendix II, to solve the boundary value problems. of Equa-
tions (4.8) and (4.13) for the case of & rigid hemisphere embedded in an
isotropic, homogeneous half-space. I consider excitation by horizontally
incident, plane SH waves and byvvertically incideht, plane P and é
waves. Results are presented for the components of the impedance matrix,
and for the components of the input motion for each type of incident
wave. The hemisphere was selected because of the availability of some
analytic results for this geometry. The finite element solutions are
compared tc these analytic solutions.

Figure 4.2 shows the pfoblem geometry, The origin of coordinates
is at the center of the hemisphere. The contact between the hemisphere
and the half-space is assumed to be welded. The radius of the
hemisphere is a, the shear modulus of the half-space is u, and the
P and S wave speeds are a« and 8, respectively. A1l numerical

results are for a Poisson's ratio of .25.

Impedance for an Embedded Hemisphere

The symmetry of the problem geometry about the z axis reduces

the impedance matrix to the form
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Figure 4.2. Problem formulation and finite element grid for embedded

hemisphere,
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L 0 0 0 Ky O
0 Ky O Ky 0 0
- 0 0 Kk, O 0 0O .
0 Ky O K O O
g 0O 0 Ky O
0 o 0 0 0 Ky
| ]

with KHM = KMH

Thus, it suffices to solve Equations (4.8) for j =1, 3, 5, and 6,
to determine Ky, » Kyv » Kyy > Ky > and  Kep o - For j =3 and j =6,
only the n =0 term is non-zero in the Fourier expansion of Equation
Appendix II, For j=1 and j =5 , only the n=1 term is
non-zero. Finding [K] reduces to solving 4 essentially two-dimensional
radiation problems.

We introduce the stiffness coefficients K. Kyys Kepp K970

o s . } -
and radiation damping coefficients cu.. Cyys Cupps Cpyo Cype 1195

coefficients, which are real and dimensionless, are defined by

K, = ua(kHH + iao CHH)

KVV_= uakkvv + 13, CVV)

A

w

W
~—

3 L .
i = v (kg * 12 Cyp) : (4.

Where a_ is the dimensionless frequency wa/g.
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Figure 4.2 shows a portion of the grid used in computing the im-
pedances. There are a total of 1000 axisymetric elements in the grid,
with 20 elements adjacent to the foundation surface. "Artificial" grid
boundaries are traction-free; but results are uneffected by this boun-
dary condition, since care has been taken to place these boundaries at
sufficient distance from Su that no reflections reach Su during the cal-
culation. The computation ran from t = 0 %o 6a/a.

Luco (1976a) has obtained an exact, closed-form expression for
the tofsiona] impedance function KTT‘ Figure 4.3 compares kTT and ch as
derived from the finite element solution with Luco's exact solution,
plotted against the dimensionless frequency ab. The results for Crr
agree to within 3% at all frequencies from a, = .2 to 3, = 6. Those for
kTT agree to within 5% from a, =0 to a, = 6. We note that a 0 = 6
corresponds to an S wavelength of one foundation radius. The difference
between the finite element and exact solutions for kTT (ao) is very
closely approximated by .012 aoz. The proportionality to a02 indicates
that the small error 1in kTT is primarily due to the way in which the
finite element method approximates the mass distribution of the soil
model adjacent to the foundation surface.

A1l five stiffness coefficients for the hemisphere are plotted in
Figure 4.4a and the five radiation damping coefficients are plotted in
Figure 4.4b (note that kMH and Chpy are negative). Mo exact solutions are
known for these stiffness and damping coefficients other than those
for torsion. In the high-frequency 1imit, however, the outgoing wave

field, at points near Su, approximates a combination of plane P and S

waves radiating normal to Su' With this consideration, the limiting
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Figure 4.3. Comparison of finite element solution with continuum solu-

tion for the torsional impedance of the hemisphere.
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Figure 4.4. a) Stiffness coefficients, and b) radiation damping
coefficients for the embedded hemisphere.
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values of CMH > éHH’ Crro and Cyy @S 3, approaches infinity can be found -~ -
without difficulty (see Appendix V). These limiting values are
. compared -in Table 4.1 with the finite element values at a, = 6.

The stiffnéss and damping coefficients for the hemisphere are
similar in their frequency dependence to those for the circular disk
foundation (Luco and Westmann, 1971; Shah,‘1968) but larger in amplitude.
kMH’ kVV’ kHH’ CMH; Cyy and Cyy are nearly independent of frequency,
while kTT and kMM are decreasing functions of frequency and Crr and CQM
are increasing functions of frequency. The coupling coefficients kMH
and Cypy» which are very small for the disk, are, for the hemisphere,
comparable in size to the diagonal coefficients. The diagonal coeffic-
ients are larger than their disk foundation counterparts by factors of
between 1.5 and 3 (the exception being kVV’ which is only about 25%

larger for the hemisphere).

Input Motion for ah Embedded Hemisphere for Horizontal Incidence

I have computed the input motion of the hemisphere for plane,
harmonic, horizontally incident SH waves of amplitude Ug> polarized in
the_iﬁdirection, propagating in the jg direction. In order to set up the
transient scattering problem (Equations (4.13)) for numerical solution,
we need to determine —gf, the boundary condition on Su' We also need
to determine {Ff(m)}, the free field contribution fo the driving force
{r*(w)}. Then, from the numerical solution to the scattering problem,
we derive the scattered field contribution {r*(w)}; this is the (numeri-
cal) Fourier transform of (v} (defined below Equation (4.14)). The

driving force {F*(w)} is the sum of these contributions (Equation (4.15));



_TABLE 4.7

HIGH FREQUENCY VALUES OF RADIATION DAMPING FOR HEMISPHERE

Radiation Damping Analytic Solution Finite Element Solution

Coefficient | []im_ao + @ ] [ao = 6]
o 4.19 4.04
CTT : 4.19 _ 3.98
CHH : 7.81 N 7.72
c 7.81 7.78

vy
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{A*(m)} is obtained by multiplication of the driQi%g force by the
compliance matrix (Equation (4.11)).

The harmonic- plane wave has free field disp]acement_Qf(ﬁ,m)eth?
which is given in terms of the Helmholtz potentials (Eringen and Suhubi,

1975, p. 722), by

!f(é,w) = v x (¥ 2), (4.34)
where
2 i%x
¥(x,w) =i uyoe . (4.35)

The cylindrical wave expansion (Magnus et al., 1966, p. 487)rof Equation
(4.35) gives

sy B s an wr 36
¥ =iy LUY]Z;O e, d ( : ) cos ne, (4.36)

where e, =1, ¢ 2 forn>1, r, g, z are the cylindrical coordinates

n
of x, and Jn is an nth order Bessel function. The cylindrical components
of gf are

poyfalay. 4, 8 ﬁi e itLg (9 sin ne

- = ro 0w M r-n ‘g

(4.37)

" f_ oY _ 8 < nrn wr

L T 2; e T L, B )

n=20
w wl ¢
=g Ipey (g ) cos ne (4.38)

I~
[
——h
]
[ew]
~~
5~
W
O
[
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From (4.37), (4.38), and (4.39), and referring to Equations (4.7) and
(4.14), we can see that when i = 1, 3, and 5, r: is zero; when i = 2 and
4, only the n = 1 terms in Equations (4.37) and (4.38) contribute to P:;
when i = 6, only the n = 0 term contributes to r:. As a result, we need
only solve Equations (4.13) for the n = 0 and n = 1 terms in the Fourier
expansion (Appendix II) to determine {r*}. It is apparent from Equation
(4.11) and (4.32) that the n = 0 term excites only torsional vibration
about the z axis, and the n = 1 term excites only rocking about the x
axis and horizontal translation along the y axis; therefore, we shall

write for {a*}

T
. * * *

{a*} = (0, By Q, B> 0, @T) (4.40)
We take gf to be the inverse Fourier transform with respect to w of the

n=0andn =1 terms of yf

1

fo_ 8 ZENEI
R H(T - T)(1 - T9) [8T(2T cos & - 1)
+ 7 2(1 - T%)sin o] . (4.41)
f

(We note that u’ must have dimensions of displacement divided by time,
if we are to interpret Qf as having dimensions of displacement.)

The free field contribution to {r*(w)} is

f_/ R
Iy = Jg & L - nds , (4.42)

where gf is the stress tensor derjved from gf, For the hemisphere we get

. Introducing T, defined by T = %g, we obtainA
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/2
Eg =211y a2 us ao.)(J J2 (ao COS A) c053 Adoa,
Q
~ .2 .
=27 ipa Uy a, Js (ao) (4.43)
£ 2 2
Pp=2myuaugag J/A Jy (a, cos A) cos™ x d 1,
o]
=27y a u, 2, Jy (ao) (4.44)
f 2 He 2
Iy = 27y a u, a, J] (aO cos A) cos” A sin A d A
2 o]
=27y a U, J2 (ao) , (4.45)

where j] and j2 are spherical Bessel functions.

To evaluate the accuracy of the numerical treatment, I have com-
pared numerical solutions to analytic solutions for two problems involving
horizontally incident SH waves. Luco (1976a) gives an analytic solution
for @; for the hemisphere. In Figure 4.5 I compare this analytic solu-
tion with the finite element solution. The agreement of amplitude and
phase is very good at all frequencies shown. There is no analytic
solution known for A; or @&gin the case of the hemisphere, so as a
second test probiem I have computed A; for a rigid cylinder of infinite
vertical extent in a full spéce. The numerical solution is compared to
the analytical solution (from Eringen and Suhubi, 1975, p. 905) in
Figure 4.6. Again, the agreement is very satisfactory over the frequency
range shown. The m aximum frequency in both comparisons represents
about eight elements per S wavelength.

*
The numerical results for 8y and ¢,, for the hemisphere are

b -

shown in Figure 4.7. The rocking motion ¢, is very small at all fre-

=

quencies; its maximum is about .15uo/a and occurs at approximately a, = 2.
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Figure 4.5. Comparison of finite element solution with continuum solu-
tion for the torsional input motion of the embedded hemisphere due to
horizontally incident, plane SH waves.
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tion for the horizontal input motion of an infinitely long, vertical,
rigid cylinder, due to horizontally incident plane SH waves.
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Rocking and horizontal components of input motion of the

embedded hemisphere, due to horizontally incident, plane SH waves.



*
The horizontal translation A, decreases with respect to the free field
as frequency increases and scattering becomes important; at a, = 1,

AH = .68 Uy

Input Motion for an Embedded Hemisphere for Vertical Incidence

We obtain numerical values for the input motion for two cases

u
of vertical incidence: a) a plane harmonic S wave of amplitude =2

2 3
polarized in the g direction, and b) a plane harmonic P wave of
u
amplitude 29- . The S wave excites both horizontal translation and
rocking of the hemisphere, so {A*} can be written
*
(0%} = (a5, 0, 0, 0, oy, 0. (4.46)

Only the n =1 term in the Fourier expansion (Appendix II)

s required in order to represent the scattered field in our finite

element formulation of Equations (4.13). The P wave excites on]y_vertica1

motion of the hemisphere, so we can write for {a*}

(4%} = (0, o0, A;, 0, 0, 0)'. (4.47)

Only the n = 1 term of the Fourier expansion is non-zero.
The free field displacement (displacement in the absence of

scattering generated by the hemisphere) for the S wave is
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ut(x,t) = &;Q[é(t - z/8) + 8(t + z/8)] (4.48)

(notice that the Fourier transform with respect to time of Hf is
X u, cos (wz/8), which corresponds to the desired vertically incident,

harmonic plane wave). Similarly, for the P wave we use

~ U
uf(x,t) = 252 [8(t - 2/a) + s(t + 2/a)]. (4.49)

. . . N . *
Figure 4,8 gives the numerical values obtained for A

* * * *
e and 4y as functions of a,- For a flat foundation, Ay and By would

simply be equal to the free field amplitude Uy at all frequencies, and

the rocking ﬁ; would be zero. As Figures 4.8(b) and (c) show, both A;
*

and Ay gradually decrease in amplitude with increasing frequency, as a

*
consequence of embedment. When 3, = 1, the magnitudes of both Ay and

A; have fallen to approximately .8 U, - On the other hand, Figure 4.8(a)

indicates that embedment introduces a significant component of rocking.
When a,= 1, the magnitude of the rocking angle @; is approximately

. uo/a, and a maximum rocking motion of nearly .4 uo/a occurs near

a, = 3. At low frequencies up to about 3, = 3, the rocking is approx-

imately in phase with the free field.
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Figure 4.8. Input motion of the embedded hemisphere due to vertically
incident plane waves: a) rocking due to incident S waves; b) hori-
zontal translation due to incident S waves; and c) vertical transla-
tion due to incident P waves.
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4.8 THE EFFECT OF EMBEDMENT DEPTH

To examine the effect of varying the depth of embedment, I
have applied the analysis method to rigid cylindrical foundations in a
homogeneous, elastic, isotropic halfspace. The foundation radius is
a ; the ratio of embedment depth to radius is h . In this section,
welded contact between the foundation and the halfspace is assumed.
Numerical results are for the case of a Poisson's ratio of .25.
Notation for the impedance and input motion components is the same as
in the previous section. The origin of coordinates will be taken as
the center of the foundation base, and the impedance and input motion
components will be given with respect to that origin.

Excitation by both horizontally and vertically propagating
SH waves is considered in this section. The input motion for vertical
incidence is obtained from the computed radiated fields, using the inte-
gral representations for the driving force given by Equation(4.29). For
horizontal incidence, I have found it more convenient to compute fhe
scattered field and obtain the input motion from Equation (4.14), as in
the previous section dealing with the embedded hemisphere.

Figure 4.9_i]]ustrates,fhémgridsAused for embedment fatios'h
of G, .5, 1, and 2. For h =0, .5, and 1, the grid contains 10
elements along the foundation radius; for h = 2, 7 grids are on the
radius. Test problems with 10 elements on the radius confirm that'the

7 element model gives accurate results in the range 0 < 3y < & .
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used for analysis of cylindrical foundations.
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The Impedances

The impedances for cylindrical foundations are plotted versus

~

dimensionless frequency in Figures 4.10 to 4.14, for h = 0, .5, 1, and 2.

Solid lines are the stiffnesses, dashed Tines the radiation damping
coefficients.

The torsional stiffness (Figure 4.10) is a decreasing function
of frequency for all values of h; the torsional radiation ddmping is
an increasing function of frequency for all h, approaching zero smoothly
as the frequency approaches zero. Both kTT and Cqp are approximately
linear functions of h for fixed ag-

The vertical stiffness (Figure 4.11) is relatively flat w%th res-
pect to frequency for all h, with a broad minimum occurring between 3y = 2
and 3 = 3 for h = 0, .5 and 1. The radiation damping coefficient is
nearly frequency independent, with a small pésitive slope at Tow
frequencies, and approaches non-zero values as 3, approaches zero. The
radiation damping increases linearly with h, and is quite strongly
dependent on h, whereas the stiffness is only weakly dependent on h.

Both horizontal stiffness and radiation damping (Figure 4.12) are
nearly frequency independent functions. The radiation damping is
again nearly linear in h, and increases more rapidly with h than does
the stiffness.

While the torsional, vertical, and horizontal impedance
components do not depend on the depth of the coordinate origin, both
the rocking and coupling impedances do depend on this depth. The curves

in Figures 4.13 ana 4.14 are with respect to the center of the foundation

base. The frequency dependence of the rocking impedance functions (Fig-
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Figure 4.10. Torsjonal stiffness and radiation damping for embedded

cylinders. The parameter is h, the ratio of depth to radius of the
cylinder.
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Figure 4.11. Vertical stiffness and radiation damping for embedded
cylinders. The parameter is h, the ratio of depth to radjus of the
cylinder.

94



95

30+ ———————— Stiffness K,y
——————— Radiation Damping C,,
L)
S
=
Q 25—
Lud
o
=
ol I i
= 2
I._..
S
™
x 154
o
I
0
wn
Ll
—J
=z
Q
2
Z
w
=
o
0 ] I8 | 1 1 1
0 1 2 3 4 5 6

Figure 4.12. Horizontal stiffness and radiation damping for embedded
cylinders. The parameter is h, the ratio of depth to radius of the
cylinder.
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Figure 4.13. Rocking stiffness and radiation damping for embedded
cylinders. The parameter is h, the ratio of depth to radius of the
cylinder.
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Figure 4.14. Coupling stiffness and radiation damping for embedded
cylinders. The parameter is h, the ratio of depth to radius of the
cylinder.
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ure 4.13) is similar to that of the torsional impedance; the stiffnesses
are decreasing functions of frequency, the damping coefficients increas-
ing functions of frequency, with steep slopes at low frequency. However,
CMM doesn't approach zero at zero frequency'for this choice of origin.
The coupling impedances (Figure 4.14) are very flat functions of
frequency.

Luco (1976c) obtained a numerical solution to the coupled
integral equations governing the static values of kTT for embedded
cylinders. In Table 4.2 I compare this solution to that obtained from

the dynamic finite element solution. The agreement is very close be-

tween the two numerical methods.

The Input Motion

Figures 4.15 and 4.16 illustrate the input motion components for
vertical incidence, for h = .5, 1, and 2. The amplitudes are summarized
in Figure 4.17. At low frequencies, the horizontal translation A;, Fig-
ure 4,17(b) decreases with increasing frequency; A; also decreases with
increasing embedment ratio h at low frequency. A: has local maxima at
approximately a, = %ﬂ-and local minima at approximately 3, = E%ig-, where
n = d, T . . .. These maxima and minima correspond roughly in freguency
to the maxima and minima of the surface integral over the foundation of
the free field displacement.

The foundation rocking, Figure 4.17(a), increases with increasing

frequency and increasing embedment ratio, for low frequencies. At

ay = 1, &, = .04 uo/a for h = .5, .15 uo/a for h = 1, and .35 uo/a for



TABLE -4.2

STATIC TORSIONAL IMPEDANCE FOR CYLINDRICAL FOUNDATIONS

Numerical Solution

Numerical Solution

h Via Integral Equations Via Finite Element
(Luco, 1976c) Method

0 5.33 5.53

g.5 13.23 13.17

1.0 19.89 19.65

2.0 32.75 32.03
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VERTICAL INCIDENCE

(Horizontal Translation)

Modulus
————— Real Part
------- [maginary Part

wa/g

Figure 4.15. Horizontal translational component of the input motion of
embedded cylinders, for the case of vertically incident, plane S waves.
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VERTICAL INCIDENCE
(Rocking)

Modulus
S T Real Part
------- Imaginary Part

Figure 4.16. Rocking component of the input motion of embedded cylinders
for the case of vertically incident, plane S waves.
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Figure 4.17. Input motion amplitudes of cylinders due to vertically
incident, plane S waves: a) rocking; and b) horizontal translation.
h is the ratio of depth to radius of the cylinder.
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h = 2. The rocking has a maximum at approximately a, = %', that is,
when the incoming wavelength is approximately twice the foundation
depth. These maxima are approximately .25 uo/a, .37 uo/a, and .4uo/a,
for h = .5, 1, and 2, respectively. The rocking is in phase with the
free field displacement, for a, less than about %—(see Figure 4.15).

Figures 4.18 to 4.20 give the input motion components for horizon-
tally incident S H waves; Figure 4.21 compares their amplitudes. The
horizontal translation A; (Figure 4.21(b)) decreases monotonically with
increasing frequency, exhibiting none of the oscillatory behavior as a
function of frequency that it has for vertically incident waves. A; is
nearly independent of embedment, also in contrast to the case of
vertical incidence. The curves for h =1 and h = 2 are nearly
indistinguishable.

For the flat foundation, the rocking resnonse to horizontally pro-
pagating SH waves (Figure 4.21(a)) is negligible. For embedded foundations,
this component is small, with a maximum at about a, = 2. The location
of the maximum is independent of h. This maximum value is approximately
.05U,/a for h = .5, and .08 u,/a for h = 1. For h =2, the rocking
response is virtually identical to that for h = 1.

*

Amplitudes of the torsional response ¢ . to horizontally prop-

agating SH are shown in Figure 4.21(c). This component of the folndation

input motion has a maximum at approximately a, = 2 for h = 0, ana at
approximately 3, = 1.6 for h = .5, 1, and 2. This maximum decreases with
increasing h, from .63 uo/a for h = 0 to .45 uo/a for h = 2. The high fre-

quency asymptote, however, increases with increasing h. At lew frequencies

@? is /2 out of phase with respect to the free field (see Figure 4,20).
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Figure 4.18. Horizontal translational component of the input motion of
embedded cylinders, for the case of horizontally incident, plane SH

waves.

104



105

HORIZONTAL INCIDENCE

(Horizontal Translation)

Modulus
————— Real Part
------- Imaginary Part

*
H

A

Figure 4.19. Rocking component of the input motion of embedded cylinders,
- for the case of horizontally incident, plane SH waves.
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HORIZONTAL INCIDENCE

(Torsion)

Modulus
————— Real Part
------- Imaginary Part

Figure 4.20. Torsional component of the input motion of embedded
cylinders, for the case of horizontally incident, plane SH waves.
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Figure 4.21. Input motion amplitudes of cylinders due to horizontally
incident, plane SH waves: a) rocking; b) horizontal translation;
and ¢) torsion. h is the ratio of depth to radius of the cylinder.



The input motion components for horizontal and vertical incidence
are compared, for the case h = 1, in Figure 4.22. The 3 dashed curves,
(b), (e), (d), are the horizontal, torsional, and rocking components,
respectively, for horizontally incident SH waves; the 2 solid curves
(a), (c) are the horizontal and rocking components, respectively, for
vertically incident S waves. For 3, less than 1, horizontal and
torsional motion are important, and rocking less important, for hori-
zontal incidence. In the case of vertically incident waves, horizontal

Jmotion dominates for ao'less than one, but rocking becomes a major com-

ponent of the response at higher frequencies.

Discussion of Low Frequency Approximations to the Input Motion

It might be expected that the average of the free field displace-

ment over the surface of the foundation would provide a goou estimate of
the horizontal input A; at low frequencies. The numerical results demon-
strate that this is not the case. As an example, we will consider hori-
zontally propagating SH waves and a cylindrical foundation with h = .5,

The average free field displacement over the shell of the cylinder is

Jo(aoi, andg is independent of h. The average over the base

ZJ](aO)

alone is In Figure 4.23 I have plotted these two estimates,

as well as tge average over the base plus shell, along with the numer-
ical solution for !AHI. Over no gppreciable range of frequency are the
estimates useful approximations to the behavior of the foundation. The
shell-plus-base average, for example, overestimates the response
everywhere below 3, = 2, and underestimates the response at higher

frequencies. It appears that the approach of spacially averaging the

free field provides, at best, a means of obtaining an upper bound to
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Figure 4.22. Amplitudes of the input motjon components of a cylinder
with h = 1, due to both horizontally and vertically incident waves.

109



110

1.2~ -~ —~finite element solution
average free field

(a) averaged over shell of cylinder
(b) averaged over shell and base
(c) averaged over base only

o
!

HORIZONTAL DISPLACEMENT
)

Figure 4.23. Amplitude of the horizontal trans?ation of a cylinder with
h = .5, compared to low-frequency approximations: dashed curve is
the finite element solution, solid curves are the three low-frequency
approximations mentioned in the text.
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the foundation input motion at very low frequencies.



4.9 HIGH FREQUENCY ASYMPTOTES FOR IMPEDANCE AND INPUT MOTION

The high frequency limits for the radiation damping coefficients,
obtained by the method of Appendix V, are tabulated in Table 4.3, along
with the finite element results at a, = 6. The very close agreement
demonstrates that the simple physical considerations upon which the high
frequency approximation relies are valid even at quite low frequencies.
Recall that a, = 6 corresponds to én S wavelength of one foundation
radius.

We can obtain high frequency asymptotes for the input motion
components by a similar procedure to that applied to the impedance
functions. The approximation is discussed in Appendix V. For hori-
zontally propagating SH, for example, the amplitude of the 1npﬁt torsion

is given in the high frequency limit by

* U
~ 0 4h 2
ol F T v Ta ' (4.50)

The high frequency limit on the horizontal input motion for horizontally

propagating SH is

* 2
|AHI S zh v (4.51)

M+ hE+ 1] ra
B8 o

(where I have simplified the expression by choosing the reference point
to be a height %—h%a(a/s + 1)/[1 + h (a/B8 + 1)] above the foundation
base, so as to nullify the coupling impedance in the high frequency
Timit).

Figure 4.24 compares the high frequency approximations with the
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Figure 4.24. Comparisons of finite element and asymptotic solutions for
the amplitudes of input torsion and horizontal translation of a
cylinder with h = .5. The incident wave is a horizontally propagating,
plane SH wave.
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finite element solutions for«s? and for A;, for horizontally propagating
SH, when h = .5. It is apparent from this comparison that the high-"
frequency approximate solutions are fairly representative of the true
solutions when a, is greater than about 2.5, and are nearly identical
to the true solutions for a, greater than 6. This correspondence is
maintained out to a, = 10, which represents an S wavelength of slightly
more than one-haif foundation radius.

The physical basis of these asymptotic approximations (see
Appendix V) s not restricted to axisymmetric foundations. The
approximaticns should be a useful check on the validity of general three-

dimensional calculations.
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4.10 SUMMARY AND CONCLUSIONS

Transient finite element analysis provides an effective method
for solving the radiation and scattering problems governing linear
soil-structure interaction in an unbounded medium. The method accom-
modates seismic excitatfon of very general form, including non-
vertically propagating seismic waves and point sources. The transient
analysis procedure eliminates the influence of non-physical grid
reflections, and steady-state results are accurately obtained via numer-
ical Fourier transformations. Extensive comparisons of numerical
solutions with available analytical results document the accuracy of
the method. To the author's knowledge, results presented in this
chapter represent the first such replication of analytic results for
the steady state response of foundations to seismic waves.

Results for heﬁispherica] and cylindrical foundations indicate
that embedment has a marked influence on foundation response to seismic
and external loads. Embedment has 1ittle effect on the shape of the
impedance components as functions of frequency. The amplitudes and
phases of the impedances, however, are strongly dependent on embedment.
Both the stiffness (real part of the impedance) and radiation damping
(imaginary part of the impedance divided by frequency) increase with
increasing embedment for all components. The radiation damping is
generally more sensitive to embedment depth than is the stiffness.

The input motion components for vertically incident SH are more
sensitive to embedment than are the input motion components for
horizontal incidence. For vertical incidence, the rocking component

(which is zero for flat foundations) attains a significant fraction
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of the free field amplitude as a result of embedment. The horizontal
component (which equals the free field for flat foundations) diminishes
with respect to the free field in consequence of embedment. For
horizontal incidence, the rocking increases with embedment, but is
small compared to torsion and horizental translation. Horizontal
translation and torsion both decline with incfeasing embedment, at

low frequencies, but embedment depths greater than .5 times the radius
have 1ittle additional effect on these components.

[t has been shown that there is a considerable overlap in the
frequency ranges of validity of the finite element solutions and the
high-frequency asymptotes, for the class of problems considered. Thus,
the two solutions provide a check on each other in this intermediate
frequency range, and thus we can be confident of the solution over all
frequencies.

The applications presented in this chépter were limited to axi-
symmetric soil-foundation systems. As a guide to the efficiency of
the method, we note that the set of results presented for each
cylindrical foundation required approximately 10 minutes of computing
time on a CDC 7600. This figure includes computation of the 5
components of the impedance matrix, the input motion components
for vertically incident S waves, and the input motion components for
horizontally incident SH waves. In view of the broad frequency band
of coincidence between the finite element solutions and the high
frequency asymptotes derived in Appendix V, it appears that the
computing effort can be even further reduced by increasing the

element size relative to the foundation dimensions. By exploiting
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‘the demonstrated validity of the asymptotic approximation, this decrease
in computing effort could probably be accomplished without any real
Toss of information about the solution. With these considerations, a

three-dimensional analysis of non-axisymmetric systems seems feasible.
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APPENDIX I
THE FINITE ELEMENT COMPUTATIONAL METHOD

Finite element calculations for this thesis are based on the
formulation of Frazier and Petersen (1974). The method differs in many
respects from conventional finite element programs, and therefore a
brief and simplified review of the method is presented. In the develop-
ment, subscript notation is used for directional components and matrix
notation for listings of nodal variables. The symbols < >, { }, and
[ ] denote row, column, and diagonal Tistings, respectively. For
simplicity, all matrices are of order N (the total number of node
points in the finite element grid), and the development is restricted to
Cartesian coordinates X with subscripts ranging from one to D (the
number of spatial dimensions).

As in conventional finite element schemes, the displacement
ui(g,t) s Within a typical element e , is interpolated from<noda1

displacements {Ui} :
u.{x,t) = <ag{x)> {Ui(t)} for x in e .(I.1)

Nonzero entries appear in the row listing of interpolation functions
<ae(5)> only when g lies within or on the boundary of element e ,
and then only in those nodal positions associated with element e .
Element strains, €545 are calculated by the appropriate differentia-

tions of the interpolation functions <a(x)> to yield
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e

efs(x.t) = —]2— <L (x> {Uj(t)} WP (x)> {Ui(t)}
(1.2)

i
When interpolations are expressed in the isoparametric element coordi-

[g]

nates z , a chain rule differentiation is needed to obtain strain:

3z 3z

Szt = Lon @ {un) +1n a2 @) fu ()
W T ag G 2 Y zaxg Sag U
(1.3)

1]

J m

where terms (azi/axj) are developed from the isoparament element trans-

formations, which are conventional in finite element methods.
Spatially discrete equations are obtained by substituting the

above interpolation scheme into the virtual work expression:

;/-(pﬁi Suj + oyj deq5 - Ty Suj)dv -d/f T, Suj ds = 0
v . . S¢ (I.4)

where u; and Seij denote kinematically conforming virtual displace-
ments and strains, respectively; Ui denotes particte acce]eration{
%35 is stress; ?} is applied surface traction; ?} is prescribed
body force per unit volume, and p 1is the mass density of the medium.
The volume V represents the assemblage of finite elements, and the
surface S0 is that portion of a3V , internal or externa1; over which

tractions are applied. Substitution of the interpolated fields into the

virtual work expression yields the equations:
[MEl;(e)} = (R (0)} + (Ry(t)} (1.5)

where
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"

i ~_8 T
(R ()} = - Z'/‘osj(f,tug_g__ (x)> dv  (1.6)
J

e ye
T .
(u] = Zf o Ca%(x)> <a®(x)> qu (1.7)
e Ve

and

| . |
(Fy () Zf filet 0> ae [ Fn el e,
o sE (1.8)

ve

is the volume of element number e and S§ is that portion of SG
that borders element e . For computational efficiency, the mass matrix
[M] is diagonalized by replacing the diagonal terms in [M] by the sum
of the corresponding row of [M] and zeroing all off-diagonal terms.
The integrals above are altered somewhat for operatfon in isoparametric
elements.

Tne column matrix {Ri(t)} represents the restoring forces
exerted on the node points by the deforming material. In conventional
finite element methods, restoring forces are computed by multiplying a
stiffness matrix by the nodal displacement column matrix: In the compu-
tational scheme considered here; a stiffness matrix is not computed.
Instead, calculation of restoring forces proceeds from nodal displace-
ments to strain, from strain to stress, then from stress to restoring

forces by performing the volume integrals above. This method for com-

puting the nodal restoring forces is nearly as fast as simply multiply-
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ing nodal displacements by the stiffness matrix, and has several ad-

vantages, including explicit implementation of constitutive properties

and reduced storage requirements.

The code employs a time-centered explicit method for integra-

tion in time. The calculation proceeds as follows:

(1) The various global arrays are initialized: nodal positions {Xi} )

(2)

nodal displacements {Ui(t)} , nodal velocities '{Di(trAt/Z)} ,
applied nodal forces {Fi(t)} , and nodal masses [M] .

Element calculations are performed to obtain the nodal restoring
forces {Ri(t)} :

(a) Compute strain:

e e
e$5(x,t) = <§_§3 (x)> Uy (t)} + - - > wy(en
(1.9)

(b) Compute stress:

. e
U?J(fat) =2uef. + 2 51'\]' €Lk (1.10)

where ) and , denote elastic moduli.

(c) Compute restoring forces for element e :

. , . ;
{R?(t)} =,/; ij(f’t) <'§*,% (x)> dv. (I.11)
v S

(d) Repeat operations (a), (b) and (c) for element in the grid to

produce the complete 1isting of nodal restoring force:

Ry(t)} = D (Re(t)) . (1.12)
e
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(3) Integrate the equation of motion to advance the solution by one
time step At :

(a) Compute nodal accelerations:

()3 = (]! (Fy(t)) + [M]']{Ri(t)}‘ : (1.13)
(b) Compute advanced nodal velocities:

{Qi(t-+ At/2)f= {05 (¢ - At/2)} + At{Ui(t)} . (1.14)
(c)  Compute advanced nodal disp]acgmgnts§

Wit + 8803 = U3 (1)} + atlly(t + at/2)} . (1.15)

(4) Set t =t + At and return to Step (2).

The calculation sequence described aboye indicates the basic
operations that are performed, but for the sake of breyvity, many details

have been omitted. Additional characteristics include:

(a) The element integrals to Step 2(c) are performed using a
single-point quadrature. This method produces restoring forces that are
consistent with exact integration for the six states of uniform stress
in a 3-D brick element; however, no restoring forces are pfoduced when
the element undergoes bending or torsional deformations. Consequently,
the method developed by Kosloff and Frazier (1977) is employed to pro-

duce the restoring forces for the auxiliary modes that have no



strain energy density at the element centroid. This method, based on
the exact solution to simple bending, is used in preference to a two-
point quadrature because of computational expedience and because of the

improved accuracy of the incompatible element for modeling flexure.

(b) The kinematic constraints (for example, displacement bound-

ary conditions) are built into the forcing function '{Fi(t)} .

(c) For some calculations, high frequency waves are attenuated

by introducing material viscosity in Step 2(b).

(d) Waves are computed in orthogonal curvilinear coordinates
other than Cartesian by simply altering the form of the spatial deriva-
tives (and integrations) in Steps 2(a) and 2(#). The method for pro-
cessing 3-D waves in axisymmetric geometries, which is presented in

Appendix II, employs a cylindrical coordinate geometry.
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APPENDIX II

EXTENSION OF FINITE ELEMENT METHOD
TO THREE-DIMENSIONAL WAVES IN AXISYMMETRIC MEDIA

Often the azimuthal dependence of sefsmic (1inear) disturbancgs
is of the form sin ne or cos ne . For example, waves that emanate
from a point source in a horizontally layered medium radiatg with
n=20,1, and 2, respectively; for a yertical force, a harizontal force,
and a double couple system of fdrces with,vertica] null axis. More
generally, any (linear) elastic wave field in an axisymmetric geometry
can be expressed using a Fourier (sine and cosine) series expansion of
the azimuthal dependence, with no interaction between tgrms of differ-
ent order. The development of a finite element procedure that treats
the azimuthal dependence usiné a Fourier eXpansion greatly ekpands the
class of 3-D problems that can be analyzed for modgst computing
costs (Frazier and Day, 1975).-_ This appendix represents modifica-
tions to the formulation described in Appendix I, in order to incorpor-
ate the azimufhal expansion. For simplicity, I use complex notation in
this development, whereas real arithmetic is used for computation.

Particle displacement (u], Us 5 ué) (ur, u, u@) , expressed

in cylindrical coordinates (r,z,e) , 1is discretized in © using the

harmonic expansion

u;(r,z,0, t) = Re E ugn)(r,z,t)eme (11.1)
’ n

where 1 = ¥-1 . When similar harmonic expansions are introduced for
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other field variables, the virtual work expression of section A.1 be-

comes

.jr [o Re(}% Ug“) ein@)Re(dugm) eime).+

v

Re(E: n(n) einQ)Re(égg?)'eime) _

n 1

1

Re(}Z ?(n)_eino)Re(éugm) eim@)] dv -

As the consequence of orthogonality in the aximuthal terms, we find
that the virtual work must be zero for each order in the ekpansion.

Thus, following an integration in o from Q0 to 2r , we have

vre [ (5l aWlm* (1) (me - .
. Af(Pu‘ AR ARSI L) P

7 Ref ?,W du](”)* R S (11.3)

where A denotes a section of the volume V at o =0 and Ty is the
intersection of the surface SG and the section A. The superscripted *
denotes complex conjugate.

Conventional finite element procedures are employed to interpo-

late the real and imaginary parts of ugn)(r,z,t) from nodal displace-
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ments {Ugn)(t)}

My w®(r2)> M)y (11.4)

r,z,t)

e(r‘,z)> denotes a row listing of interpolation functions for

(n)
1

where <a
the 2-D element number e . This spatially discrete form for u is
substituted into the virtual work expression for the nth azimuthal oqrder

to yield the finite element eXpression

ORI L
(oo™ @) = {0} + {aim) ) (11.5)
where
T .
[M] = Z/ 0<a®(r,z)> <a®(r,z)>r dr dz (11.6)
e “AS

' T
{an)(t)} = § :f Flr,z+t)@%(r,z)> r dr dz
a VAe .

+ Z/; ?g.n)(r,z,t) a®(r,z)> r dr (11.7)
e T

ag
e} - 3 [ e 2 e’
e A

T v
+1F (-1 no( )(r,z,t)

+ 0(”)(r z,t) <8ae (r,z)> n
12 e 9_2— ? ]3



T
- 844 Ggg)(r’z,t) + 849 cgn)(r,z,t)) (a®(r,z)> ]r dr dz
S . (11.8)

in which Ae denotes the area of element e and r: denotes the

intersection of S0 with element e . The complicated definition of
the restoring forces {Rgn)} is the result of curvilinear derivatives
in the cylindrical coordinate system.

The computing procedure for waves of azimuthal ordgr n is
nearly identical with that of Section A.1, except that restoring forcgs
(Step 2(c)) are computed using the above expression, and strains (Stgp

2(a)) are computed using the ekpression

asg)(r,z,t) =] (Y(“) + Y§?>) (11.9)
where
Yg?)(r,z,t) = auéi) (r,z,t) = <§§E-(r,2)> {Ugnj(t)} (11.70)
Ygg)(r’z’t) = auiz) (r,z,t) = <%§E-(r,z)> {Ugn)(t)} (11.11)
Ygg)(r,z,t) = %-(1 nu{m) - sy ufM) 4 535 ugn))
= %-<a(r,2)>(i n{Ug )(t)} - spfui o} + s, {u%”)(t)}>
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Waves for a particular azimuthal order n are processed only
about 30% slower than waves in a conventiona] 2-D grid that uses
Cartesian coordinates. For some problems, a single azimuthal order
suffices. For more comp]ex cases that require a harmonic series in
azimuth, individual harmonic orders can often be calculated and summed
for less computing effort than is required for a conventional 3-D

finite element analysis of comparable refinement.
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APPENDIX III
EXTRAPOLATION OF COMPUTED TIME SERIES

We use the "covariance method" (Makhoul, 1975) to generate N

predictor coefficients fi’ =1, .. .N, given a series X5 i=1, M,

where M exceeds 2N. We express the N + 1 th through'Mth term of X by
N
x=2kai_k+ei i=N+1, M,

(I11.1)

where e; is the ‘error between the actual and predicted value of X;. He
define the M-N by N matrix A and the N by 1 matrix a:

A =1, ... MN; k=1, .. .N

ik T Kienek ]

a: = X i=1, . . . M-N. (I11.2)

i i+N
If we choose the fi‘s s0 as to minimize the mean squared error in Equation

(II1.1), we obtain the "normal equations":
ATaf = aTa . (I11.3)

If the predictor coefficients are determined by solving the
normal equations, the resultant filter is not necessarily stable. I
have found a procedure for dealing with this difficulty which is
adequate for treating the waveforms encountered in this study. We find
the singular value decomposition (Dahlquist and Bjork, 1971, p. 143, see

also Lanczos, 1961, Chapter 3) of A:
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A=UzVl, (111.4)

where U is an M-N by M-N unitary matrix, V is an N by N unitary matrix,

and ¢ is an M-N by N matrix of the form

D 0
5= [ ] (II1.5)
0 0J. ,

D is an r x r diagonal. matrix, where r is the rank of A, and © is formed
by augmentihg D with rows and columns of zeros. The diagonal elements of
D are called the singular values, and are the square roots of the
eigenvalues of the matrix ATA. Next we form the "generalized inverse"

Al defined by

u , (I11.6)
where

(111.7)

]
L oaee |
u
|
[e»] Ul
-
O o
| SO—

Then we let KI denote the matrix formed from AI by setting to zero all

1

elements of D™' which exceed some threshold value. Finally, we form the

following estimate of f:
f=Aia. (111.8)

Had the large elements of D'] not been discarded, this set of filter

coefficients would be the least squares estimate, Setting the large

T

elements to zero prohibits those eigenvectors of A'A which correspond to
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small eigenvalues from participating in the construction of f.
Once the fi‘s have been found from Equation (II1.8), the series

can be extrapolated by recursive application of the equation
X; = > fk X5 _k T=EMET, L. (I11.9)

The above approach does not guarantee stability, but in practice
it has usually been found successful. Lowering the threshold level
governing the exclusion of eigenvectors can enhance prospects for ob-
taining a stable filter. A threshold 10 times the smallest component
of D—] has usually worked wéll in this study. A further precaution is
necessary in order to obtain a stable predictive filter: very broad-band
features of the original time series must be excluded from the series
X 1 =1, M, from which the filter coefficients are determined. I have
found it adequate to exclude the early part of the series from the

filtering process, and determine the filter coefficients only from the

"smooth", Tate-time part of the signal.



APPENDIX IV
NUMERICAL TREATMENT OF SLIDING FRICTION

This appendix discusses the finite element treatment of the
frictional retardation of fault slip; in particular, it deals with the
complexity imposed by temporal discretization when the fault slip has
two degrees of freedom.

We assume that a fault surface z(t), with normal n{x, t) (x on
£(t)), is specified as a function of time. To simplify the subsequent
discussion, we restrict r to Tie in the plane X3 = 0, so that
A(x, t) = 33. A tangential displacement discontinuity s(x, t) (for x
on £) is permitted across r, and continuity of the normal displacement

component is required:

s(x, t) = 1imlu(x + eX,) = u(x - eX,) (Iv.1)
slx UIX * eXg) - UIX - eXg

e~0
X3 ¢ s(x, t) =0, (1v.2)

with ¢ > 0. We also assume continuity of traction across r. To further
simplify the discussion, we assume that the fault slip is symmetric,

that 1is

A~

Tim X3 x u(x + e&3) = - Tim &3 x u(x - ex3). (IV.3)
>0 e-+0

r is assigned a tangential traction Ie due to sliding friction.

Ie 1S given by
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cos, =2 onz(t). (1v.4)

Sf s the product of a sliding friction coefficient (assumed constant)
and the normal component of traction. We constrain Sf to be positive,
so that Equation (IV.4) incorporates the physical notion that friction
always opposes the slip.

Complexity arises in the numerical implementation of Equation
(IV.4), as a consequence of the discretizatijon of time. In the
following, we take t to be equal to nat, where at is the numerical time
step, and n is an integer. We let 01 represent the velocity component in
fhe_éi direction at a particular point on g gsay on the positive side of
Z, where 23 is safd to point from the negative side to the positive side).
For simplicity of discussion, we take the point to be a node point of the
grid, so that ﬂi is a nodal velocity. The explicit time stepping scheme
(Equations (I1.13) and (I.14)) leads to the following expressions for
the tangential velocity components 0] and 02 at t +A%E:

U (6 + 85) = 0;(t - 55) + 2t i 're, (1) + 7001,
(Iv.6)

for 1 = 1, 2, where the nodal force Gi(t) includes the effect of
restoring forces, prescribed body forces, and prescribed surface trac-
tions exclusive of the frictional traction described by Equation (IV.4);
and where the nodal force Tf,inc]udes the effect of the frictional
traction.

A difficulty arises in determining Tf(t) to properly represent

Equation (IV.4). The difficulty is that the frictionalvtraction at



time t depends on the direction of slip at time t;

stepping scheme yields nodal ve]ocities only at t + n
appear that using the value of velocity at t - %E- to
frictional traction at time
light of other approximations involved in formulating
numerically.

may not properly oppose the slip. In practice it has

nowever, the time

At )
7 It might

determine the

t would be an acceptable approximation, in

the problem

However, this leaves open the possibility that the friction

been found that

with such a scheme there is a tendency for T? to drive the fault slip.

Typically, the result is unstable, oscillatory behavior of the component

of slip perpendicular to the predominant direction of slip.
z A successful solution is to determine the frictional traction
at time t from the average value of the slip at t + AL and t - %E

We approximate T?(t) as

2

0 (t - 5%
f .[ 3 . .
T. = = -z'A Sf
&Y At v At
/U5 - 85 + 05(e - 58
. ‘AT
0,(t + 37)
+ : , fori =1, 2.
"2 At Wi At .
/(e + 35 + U + 7 (1v.7)

A is a positive constant, accounting for the surface i

(I1.8) which converts the frictional traction to the nodal force T

ntegral in Equation

f

it We

have employed the simplification expressed by Equation (IV.3) to replace

éi by 01. Equation (IV.6) can now be rewritten as

M At
it B U](tv+v§~0

(1v.8)

. A .
[U1(t + z_q + U2(t +

e
3l
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At

. | B U, (t + &%
Uy(t + %E) = 0, - = 2 2 - (1.9)
Ui+ 55 « W2+ gH|7
1 7 2 >
where
B =L atas, m! (1V.10)
5 £ :
_ At -1
G o= Uyt = 55+ at W6 (2)
(¢ - 59
1 21 ‘
- 7 ot ASg M = (Iv.11)
2.0 Aty L 02, At
and
I At -1
Cp = Uplt = 55 + atn™! 6,(¢)
U,(t - 55
1 -1 ' ‘
- 5ot AS i (1V.12)

1
W At "2 Aty |2
[U] (t - T) + Uz(t = _2_)}

Equations (IV.8) and (IV.9) provide a system of two coupled, non-

Tinear equations for the unknown nodal velocity components U] and 02 at

the advanced time t + %E in terms of their known values at the preceding

time step t -<%E and the known nodal forces G](t) and Gz(t).

The system can be solved by dividing Equation (IV.8) by tquation
(IV.9) to determine

: At
Ut +5) C,
= == (IV,13)
At

U](t + §~J
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Substituting (IV.13) into (IV.8) yields the solution for U :

1
B sgn[p (t + étﬂ
u (t + 4% = ¢ - , (1V.14)
2 1 . 2 2k
(1 + C5/¢7)

and, by symmetry, the solution for 02:
B sgn[ﬁz(t + %Eq
Uyt + 35 = c, - = . (1v.15)
2,.2\°
(1 + C]/Cz)

Equations (IV.14) and (IV.15) provide a well-behaved numerical
scheme for updating the nodal velocities on I, Note, however, that
and ﬂ

care must be taken that the signs of U as obtained from (IV.14)

1 2
and (IV.15) are consistent with the values assumed for the signum
functions on the right.

If B were negative, (IV.14) and (IV.15) would always give con-
sistent solutions for U] and 02, respectively, for some choice of the
signum functions. However, B is necessarily positive, and for positive
B there exists a condition under which no solution exists to the system
(I1v.8), (IV.9). This condition is

1
3

2, cg) < B . (1V.16)

(ct

Equation (IV.16) can be interpreted physically by referring to Equations
(1v.10), (IV.11), and (IV.12). ©; is the velocity U; at time t - 2%,
accelerated over time step at by the forces G](t), decelerated by friction

for half a time step. C2 is the similarly updated version of 02'
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2
1

is the magnitude of the frictional retardation of the velocity which will

(Cy + Cg) is thus the magnitude of the partially updated velocity. B
occur during the second half time step. Solving (IV.8) and (IV.9) merely
determines the direction in which this frictional retardation acts. If
Equation (IV.16) holds, it states that the prospective frictional dece-
Teration, no matter which direction it acts in, will overcome and

reverse the slip during the subsequent half-time step. Thus, if Equation
(IV.16) holds at a given time t, we must arrest slip on the fault by
setting ﬁ1(t +‘%E) and ﬁz(t + %E)‘to zero. Otherwise the frictional

traction will be driving the fault slip instead of opposing it.



APPENDIX V
HIGH FREQUENCY APPROXIMATIONS FOR IMPEDANCE AND INPUT MOTION

In a homogeneous, isotropic, elastic halfspace, simple physical
considerations lead to approximations for the impedance and input motion
components (defined in Chapter 4 ) which are valid in the limit of high
frequency. We shall retain the terminology of Chapter 4 . We recog-
nize that in the high-frequency 1imit, the scattered (or radiated) wave
field, at points near Su , approximates a combination of outgoing,
plane P and S waves propagating normal to Su . That is, if
yﬂ;o,m)eiwt is a prescribed disp]acement on the surface S.u with norm-
al n (see Figure 4.1 ), we approximate the displacement field
t

Ue'® | near S, and at high frequency, by

W -
an =l—g.
Q

.
Ulxy=efi,w) = V-« [ifde™ " + (I-Ad)e ' B °] (v.1)

for X, on Su and ¢ approaching 0 (I 1in the identity tensor).

Then we derive the traction on Su from Equation (V.1).
~ Impedance

As an i]]ustratioh of this approximate method, we derive a high
frequency approximation to the vertical impedance KVv of a circular
disk with radius a and normal n =z , on the surface of a halfspace

Z <0 . We have, from Equation (4.7),

V=29
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and from Equation (v.1),

iw/a e

U(x_ - e Nu) = Ze . (v.3)

X
)

The traction £ -n on S derived from Equation (V.3) is

A= % B
L+ n=z(xten)i=, (v.4)

so, from Equations (V.4) and (4.9), the impedance Kyy s approxi-

mated by

3 [*]
Kyy = Traiga, (V.5)
where a, is the dimensionless frequency wa/8 .

We 1ist the results for the five impedance components of a

cylindrical foundation with radius a and height ha:

KET - 1ﬁ(_12-+ 2h) (v.6)
ua ao

K

W . e

v ag 1“(E'+ 2h) (v.7)
al = in[1 + h(E+ 1)]

waa_ m 8 (v.8)
K 2 2

MM L el e e, b

pall S ALURS o RS ol (v.9)
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K

20
=1 7 h%(%+ 1) (v.70)
ua ao

where the moments are taken about axes originating at the center of the
foundation base.

For a hemispherical foundation, the five impedances are

K R
, g.T . %Ti (V.11)
a a
Ha a4

K

W . 2n o
ua a ! §_'(E'+ 2) (v.12)
X

HH . 271 («a
@y T (G+2) (V.13)
K

B 1‘%”1 (V.14)
ua ao

where the moments are about axes originating at the center of the

hemisphere.

Input motion

Next we consider the input torsion to a cylindrical foundation,
due to horizontally propagating SH waves. The free field displacement
’ Qf is given by Equations (4.37) to (4.39). In Equation (V.1),

we take V to be -gf , so that U , as approximated by Equation
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(Vv.1), will represent the scattered field gf at high frequency:
S - si B N el -i 2 e
U7 (x _-ef,w) = [Fiu £ 3 e i E-Jn(§—051n nele” &

L= ] - <
BT i[5 9,8 - 29 (B ]cos nere™ B° (v.16)

when X is on the "shell" of the cylinder, and

-—O
Ulx e B w) g % - )‘»‘_]_.eﬂ;i”% g, ( %‘C ) sin ne
S0 L |
. a nen wr w w; EE .
t ¢nzoan1 [;‘JH(E—J - E-Jn+1(§—d]cos ngle g ° (V.17)

when X is on the base of the cylinder.

—0
The torque derived from the scattered field, F? , is

P“?':/("}_x;i_) '_Z_S-ﬁds

Sy

S . zrady O [ha Jdi(a) + do(a)] (v.18)
= 3 o “1'% 2'% : .

Ty

The free field torque r? is

=2ma®n 2 iha d, (a) . (v.19)
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The torsional impedance at high frequency is

Ko = ina3ﬁ(%-+ 2h) a

— (v.20)

0 -

S

The input torsion, in terms of T s r; , and KTT , 1s given by

S f
* .(rT + FT)

Ay = —_—?;;T"_—" , (v.21)

according to Equation (4.11 ). Using our approximations (V.18) and

(V.20), and the exact expression (V.19), we obtain

% U : __5_
b= 59- ] 2h | z ei(@g- g7 , (V.22)
(= + 2h) o _

neglecting higher powers of ]/a0 .

As a second example, we obtain the input horizontal transiation

of a cylindrical foundation due to horizontally propagating SH waves.

f

H due to the free field is

The horizontal force T

Iy = - %wazhzuiaouo[(§'+ 1Ndg(a)) + (%—- 1)J2(ao)] , (V.22)

and the approximation of Equation (V.16) gives the scattered field

contribution Fa and the impedance KHH :
IS = —rahpia u [(E+ 100 (a) + (& - 1)d,(a) + = d(a )]
H Higte L3 0'% B 2 % haO 1'%
, (v.23)
Koy = war [T+ h (£+1)] ia_ . (v.24)

HH 8 0



. * . ) bk o : \
To obtain Ay using Equation (4.11), we need KMM MH

However, if we choose the origin to be a héight & above the base of

the cylinder, where

'lr 2,a
h=(= + 1
5 =2 (ﬂ a (V.25)
1+ h(%+ 1)

the coupling component K vanishes in the high frequency limit, so

MH
*
that Ay with respect to this choice of origin is simply

f S
* - “(FH"" FH)

H KHH

A (v.26)

and we obtain the approximation

. 2h u . il
A:(z -9 l/ NICAES N O3
1+ h(%+ ]) Trao

and. K as well.
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